1.本发明涉及智能型天线指向误差以及信号源过度估测发生时,可自适应让导向矢量有实时校正的能力的技术领域,具体为一种基于二维空时广义旁瓣相消稳健波束形成算法。
背景技术:2.智能型天线技术的应用,对信号强度与系统容量的提升有很大的帮助,尤其在强调以cdma技术核心的系统之中,对于消除多重接取所产生的干扰信号有很大的帮助,因此在未来6g/7g通讯的系统的规格中,建议使用智能型天线的技术来提升系统的容量与传输效率。
3.智能型天线是一种以多传感器所组成的天线阵列,利用天线阵列的波束形成技术,产生多个独立的波束,來追踪每一个用户,而应用智能天线系统可将天线信号导向期望方向,产生空间定向波束,使天线主波束对准用户信号到达方向(direction of arrival,doa),旁波瓣或置零点对准干扰信号到达方向,可以达到充分有效利用行动用户信号并删除或抑制干扰信号的目的。因此,要实现智能型天线系统使用到的阵列天线理論,主要可分成三部分:信号源数目估测、到达角度估测与波束构成。
4.在文献[8]中,有两个信号源数目估测方法如akaike信息准则(akaikeinformation criterion,aic)和最小化描述长度(minimum description length, mdl)方法已经被提出,由于信号源数目少估会比过度估测付出更高的代价,因此估测信号个数时常会有信号源过度估测之情况产生。而系统在实施到达角度估测时,会因为许多环境的变动因素造成角度估测不准确。当到达角度估测并不准确时,期望信号入射角度与接收机预估之入射角度并不吻合,将产生指向误差的问题,此时期望信号无法落在主波束最大响应位置,造成期望信号消除。当上述两问题同时存在且波束形成器使用特征分析算法,期望信号成分会被归类到干扰子空间,使系统效能降低。
[0005]
智能型天线在时间-空间系统下线性数组信号模型
[9]
,并将分别介绍未经过解扩频及经过解扩频之后的信号模型,为了简化后面章节对天线数组的分析,首先作了以下假设:
[0006]
1.天线单元间的距离足够小,因此可以假设不同天线单元间所接收到的信号振幅变化可以忽略,只考虑路径引起的相位差。
[0007]
2.任何天线单元间不会发生耦合效应且入射信号的带宽远小于载波频率,可以将入射信号视为窄频带信号。
[0008]
3.假设信号源与天线数组间的距离足够远,如此便可以将此信号视为远场信号源,并且将入射波视为一平面波。
[0009]
考虑一个含有k个信号源的线性系统,使用正规化扩频码c1,c2,
…
,ck,来传送二进制相移键控,二进制相移键控信号周期为tb,因此接收机所接收到的用户信号可以表示为
[0010]
[0011]
其中bk(z)∈
±
1代表第k个使用者的第z个数据位被扩频码扩频,εk为所接收到第k个使用者的功率,假设扩频码长度为l,此时第k个使用者经标准化的扩频码为n(z)为信号通过信道所产生的噪声,在此假设为白色高斯噪声。
[0012]
假设一upa数组天线含有m
×
n个全向性天线阵列,各天线阵列间距为d=0.5λ并且座落在x-y平面上的此时 m=1,2,
…
,m且n=1,2,
…
,n,假设信号源的入射高低角及水平角分别为θ、φ,假设天线的振幅为单位增益,且相位增益为exp{jπ(m-1)μ+(n-1)υ}、μ=sin(θ)cos(φ)、υ=sin(θ)sin(φ)。如图1的数组天线所示,则第(m,n)个天线阵列所接收到的信号可以表示成:
[0013][0014]
将平面型数组输出之信号表示为:
[0015][0016]
上式中{
·
}
t
代表转置、ac(uk)=[1,exp{jπμk},
…
,exp{jπ(m-1)μk}]
t
, ar(υk)=[1,exp{jπυk},
…
,exp{jπ(n-1)υk}]
t
,n为所有天线所收到之噪声所组成之矩阵,为了使自由度提高,将二维均匀平面型天线数组用一维表示,因此输出信号为:
[0017][0018]
此时为第k个使用者的导向矢量,定义为 kronecker乘法[附录a],为二维数组展开后与时间特征合并之噪声矩阵,假设第k个使用者就是期望使用者k=d,入射角度为(μd,υd),此时有k-1 个干扰,并且将期望信号的导向矢量表示为ad。此时将以二阶统计量自相关矩阵表示:
[0019][0020]
理论上,在稳态环境下天线数组输出自相关矩阵应由整体平均得到,但于实际操作上,可以由时间平均来获得估测的自相关矩阵[12]:
[0021][0022]
其中z为总共观察的位数。本发明将使用空间-时间之特征空间,因此将接收信号之扩频码与导向矢量再表示成时空数组形式[6]:
[0023][0024]
其中其中为将空间-时间因素合并后所之噪声矢量,而时空信号所形成的自相关矩阵表示为:
[0025][0026]
总之,智能型天线是一种以多传感器所组成的天线阵列,利用天线阵列的波束形成技术,产生多个独立的波束,來追踪每一个用户,而应用智能天线系统可将天线信号导向期望方向,产生空间定向波束,使天线主波束对准用户信号到达方向(direction of arrival,doa),旁瓣或零陷对准干扰信号到达方向,可以达到充分有效利用行动用户信号并删除或抑制干扰信号的目的。
[0027]
但系统在实施到达角度估测时,会因为许多环境的变动因素造成角度估测不准确。当到达角度估测并不准确时,期望信号入射角度与接收机预估之入射角度并不吻合,将产生指向误差的问题,此时期望信号无法落在主波束最大响应位置,造成期望信号消除。
[0028]
为了解决指向误差之问题,文献[1]中提出了线性限制最小变异波束构成器(linear constrained minimum variance beamformer,lcmvb),此方法以附加约束法来减轻数组的敏感性,其中微分限制是被用于减轻由指向误差所引起的效能衰退。经过微分限制主波束将会变宽,当指向误差不大时期望信号被消除并不严重,而零陷技术用于抑制非固定的干扰。无论如何,此方法有两个缺点,当干扰入射角度在主波束范围内将无法对此干扰做有效抑制,且利用此一降低变量之自由度以求得最优权重矢量的方法,所获得的结果会使数组效能在干扰和噪声抑制上产生衰退。
[0029]
后来陆续提出其他广义特征空间波束形成器(generalizedeigenspace-based beamformer,geib)文献[2]-[4],这个侦测器对较小的指向误差具有稳健性,侦测方式是将接收到的信号先作自相关矩阵并利用特征空间的观念将此信号自相关矩阵分解成信号子空间和噪声子空间并结合 lcmvb,但使用此方法有一个严重的缺点就是必须正确知道信号源的数目。否则,当期望信号功率小于噪声功率时,此侦测方法将造成干扰源数目过度估测的现象而使整个系统的性能降低。
[0030]
为了解决此问题,文献[11]中提出了稳健的广义特征空间波束形成器,此形成器利用传送信号及接受信号的交互相关矩阵,经过处理会和正确导向矢量之间有一倍数关系,利用此关系式估出正确的信号源入射角度,并重建导向矢量以找出最优权重值。但此方法亦无法对抗靠近主波瓣宽度边缘附近的较大指向误差问题,当误差角度过大效能将会崩溃。
[0031]
参见图1-图7所示,广义旁瓣相消器(generalized sidelobe canceller, gsc)。gsc为基本架构,如图1所示。以下将介绍gsc基本原理、gsc 在二维upa平面上之应用并仿真此方法在完美环境下之效能[6][7]。
[0032]
基于特征分析之广义旁瓣相消器原理
[0033]
首先gsc架构的权重矢量为:
[0034]wgsc
=w
q-bwaꢀꢀꢀꢀ
(2.8)
[0035]
其中导向矢量a1之维度为mn
×
1,b为阻塞矩阵也就是a1的零矩阵满足bha1=0,维度为mn
×
(mn-1)并满足bhb=i。此时最优权重解wa可经由计算所有数组输出最小化所得,如下式:
[0036]
[0037]
由式(2.30)求得最优适应性权重解wa[0038][0039]
上式中设u(z)=bhx(z),rb为由u(z)所形成之二阶统计量自相关矩阵表示如下:
[0040][0041]
欲使用基于特征分析广义旁瓣相消器必须得到rb之特征矢量,因此对 rb作特征值分解如下:
[0042][0043]
此时为所有的特征值,而ei对应到第i个特征值λi。由干扰特征值所形成的对角矩阵为λi=diag{λ1,λ2,
…
,λ
k-1
},维度为(k-1)
×
(k-1);由噪声特征值所形成之对角矩阵为λn=diag{λk,λ
k+1
,
…
,λ
mn-1
},维度为(mn-k)
×
(mn-k)。最后对应每个干扰特征值可以形成干扰子空间ei=[e1,e2,
…
,e
k-1
];对应每个噪声特征值可以形成噪声子空间en=[ek,e
k+1
,
…
,e
mn-1
]。从第(2.11)式可以知道en和阻塞矩阵b为正交在文献[10]中也提到此时p只包含干扰成分,所以此时由式(2.11)、(2.12)经过传统波束形成器权重解可以改写为:
[0044][0045]
由式(2.13)可以得知适应性权重最优解w
ao
矢量落在干扰子空间,因此无论期望信号成份存在与否,式(2.13)为gsc架构下适应性波束形成器之最优解。最后假设在有限的观察时间内,由所有数组获得最优权重解为:
[0046][0047]
计算机仿真与分析:仿真当信号源入射角度及信号源个数完美估测时,使用特征gsc作为波束形成器之架构并使用w
gsc
作为权重矢量。假设一 6
×
6的均匀平面型数组,天线之间的距离为0.5λ,此时有4个信号源,分别由角度(μ,υ)=(0,0)、(-0.55,0)、(0.53,0)、(0.57,0)同时入射,而第一个信号源为期望信号,信号强度为snr=10d,其他信号源为干扰,干扰信号为等强度inr=30db。下图2、3、4为模拟图。首先,图2为二维均匀平面数组的波束方向图。图3为扩频信号的功率频谱的υ=0,变化μ从-1至+1来观察一维波束方向图,由此图可以看出在完美环境下,gsc可以将期望信号稳健住且将干扰抑制,即使在干扰源非常接近的情况下效果依旧很好。图4 令μ=0,变化υ从-1至+1的一维波束方向图。
[0048]
信号源数目过度估测对系统效能之影响:当波束形成器使用特征空间算法时,一旦有信号源数目过度估测之情形发生,在撷取信号子空间时会将部分噪声子空间纳入范围内,使信号无法完整地投影在信号子空间,造成效能降低。但一般来说,只要在没有指向误差之环境下,信号源数目过度估测对性能不会有太大的影响。
[0049]
指向误差对系统效能之影响:指向误差表示系统接收端所接收信号入射角度与预估的信号入射角度产生误差,导致天线数组的波束指向错误方向,而真正的信号被当成干扰消除掉,使系统效能崩溃。在某些算法下,当期望信号越强甚至会被消除得更彻底。此问
1);由噪声特征值所形成之对角矩阵为λn=diag{λ
k+1
,λ
k+2
,
…
,λ
mn
},维度为(mn-k)(mn-k)。最后对应每个干扰特征值可以形成干扰子空间ei=[e2,e3,
…
,ek];对应每个噪 0声特征值可以行程噪声子空间en=[e
k+1
,e
k+2
,
…
,e
mn
]。
[0061]
由式(3.2)可知,真正的导向矢量第一个元素为1且每ㄧ个元素的振幅也都为1,因此对此矢量作标准化得到一矢量f=(v1)-1
v,v1代表v的第一个元素。令fi为f的第i个元素,因此可以从此关系式估出正确的导向矢量:
[0062][0063]
代表第i个元素。最后将代入gsc架构中的阻塞矩阵以及权重矢量,得到新的权重矩阵:
[0064][0065]
其中其中为所欲求得的适应性权重
[0066][0067]
此时的经由上述之替换得到之最终权重矢量解为
[0068][0069]
式子中
[0070][0071]
这时接收机所接受之信号通过阻塞矩阵能够被阻隔较完全,但由于 rgsc的估测能力并不好,使效能只能获得些许提升。
[0072]
计算机仿真与分析:本节之模拟使用作为波束形成器之权重,假设一8
×
8的均匀平面型数组,天线之间的距离为0.5λ,此时有4个信号源分别由角度(μ,υ)=(0,0)、(-0.55,0)、(0.53,0)、(0.57,0)同时入射,而第一个信号源为期望信号,信号强度为snr=0db;其他信号源为干扰,干扰信号皆为等强度inr=30db。图9为在有指向误差(μ,υ)=(0.2,0)但信号源数目正确估测的情形下之二维波束方向图。图10令图9的υ=0,变化μ从-1至 +1来观察一维波束方向图,由图可看出此方法对于强干扰在信号源正确估测时,有不错的校正能力。图13令μ=0,变化υ从-1至+1的一维波束方向图;而图12、13、14是在有指向误差(μ,υ)=(0.2,0)且信号源数目过度估测 je=j+1的情形下,使用rgsc作为波束形成器算法之波束方向图。由图 13能发现即使信号源过度估测,指向误差仍然会被校正,但由于噪声子空间不再与信号子空间正交,造成旁波隆起且噪声放大。
[0073]
这个部分为在有指向误差(μ,υ)=(0.2,0)且信号源数目过度估测 je=j+1的情形下,利用图15、16、17、18观察rgsc与gsc的性能比较。图15将gsc及rgsc之波束方向图放在一起比较,可看出传统gsc不会对指向误差做校正,因此会将期望信号当作干扰消除;而rgsc会对指向误差做校正,但结果并不好且在信号源过度估测时会有噪声放大的情形产生。图16变化输入数据之位数由100到103来观察输出的sinr,由此图可看出两个方法的收敛
for robust adaptive beamforming,”proceedings of ieee international conference on acoustics,speech,and signal processing,toronto,canada, pp.1381-1384,june 1991.
[0091]
[4]l.chang and c.c.yeh,“performance of dmi and eigenspace-based beamformers,”ieee trans.antennas propagation,vol.40,no.11,pp. 1336-1347,nov.1992.
[0092]
[5]s.haykin,adaptive filter theory,4th edition,prentice hall,new jersey, 1996.
[0093]
[6]l.j.griffiths and c.w.jim,“an alternative approach to linearly constrained adaptive beamforming,”ieee trans.acoustics,speech,and signal processing,vol.30,no.1,pp.27-34,jan.1982.
[0094]
[7]k.m.buckley and l.j.griffiths,“an adaptive generalized sidelobe canceller with derivative constraints,”ieee trans.antennas propagation, vol.34,no.3,pp.311-319,march 1986.
[0095]
[8]m.wax and t.kailath,“detection of signal by information theoretic criteria,”ieee trans.acoustics,speech signal processing,vol.33,no.2, pp.387-392,april 1985.
[0096]
[9]a.chkeif,k.abed-meraim,g.kawas-kaleh,and y.hua,
ꢀ“
spatio-temporal blind adaptive multiuser detection,”ieee trans. communications,vol.48,no.5,pp.729-732,may 2000.
[0097]
[10]n.k.jablon,“steady state analysis of the generalized sidelobe canceller by adaptive noise cancelling techniques,”ieee trans.antennas propagation, vol.34,no.3,pp.330-337,march 1986.
[0098]
[11]y.h.chen and a.c.chang,“a generalized eigenspace-based beamformer with robust capabilities.”journal of chung cheng institute of technology, vol.31,no.1,oct.2002.
[0099]
[12]d.r.brillinger,time series:data analysis and theory,expanded ed.san francisco:holden-day,1981.
技术实现要素:[0100]
本发明设计了一种基于二维空时广义旁瓣相消稳健波束形成算法,其解决的技术问题是如何使用二维数组在广义旁瓣相消器(generalized sidelobe canceller,gsc)架构下,解决指向误差及信号源数目过度估测问题
[0101]
为了解决上述存在的技术问题,本发明采用了以下方案:
[0102]
一种基于二维空时广义旁瓣相消稳健波束形成算法,包括以下步骤:
[0103]
步骤1、当智能天线系统接收器发生指向误差或是信号源过度估测的情况下,将使用空间-时间之特征空间,因此将接收信号之扩频码与导向矢量再表示成时空数组所接收之信号为:
[0104][0105]
其中其中为将空间-时间因素合并后所之噪声矢量;
[0106]
而时空信号所形成的自相关矩阵表示为:
[0107][0108]
其中,空间-时间信号表示为这边定义空时自相关矩阵二维数组所形成p≡vhv,v可表示为v=[v1,v2,
…
,vk];此时的自相关矩阵p以schur形式表示成两个矩阵相乘,例如:p=d
·
rc;
[0109]
d包含了空间特征之间的相关性,例如:而这时的rc为时间处理的自相关矩阵,例如:所以此时将空-时自相关矩阵(1.2) 式之作特征值分解:
[0110][0111]
其中的in为一维度为(mnl-k)
×
(mnl-k)的单位矩阵,此时的us是由v所组成的信号子空间所形成的正交基底;而un为正交于信号子空间的噪声子空间所形成的基底;对角矩阵λs包含了由分解出的k个最大特征值;
[0112]
步骤2、对于cdma接收机而言,v1中的部份内容是能够被知道,扩频码c1是知道的,但导向矢量并不知道;因此这边使用信号子空间正交于噪声子空间的方法;详细地说,就是使用一单位特征矢量来估测此时:
[0113][0114]
上式中i
mnl
为一个维度mnl
×
mnl的单位矩阵,由此可看出q的单位特征矢量能够被拿来当估测正确导向矢量的依据;
[0115]
此时,令h为由q找出之单位特征矢量且hi定义为h的第i个元素, i=1,2,
…
,mnl;由于正确导向矢量ad的第一个元素为1且每个元素的振幅也都为1,且由h可以找到正确之导向矢量,结合上述两条件写成下列解最优值之问题:
[0116][0117]
这边为第i个元素,经过数学式简化,上式可以重新写成下式:
[0118][0119]
re{x}代表取x的实数部份,解出式1.6的最优解写成一多项式为而为它第ith元素;
[0120]
步骤3、将代入gsc架构中的阻塞矩阵以及权重矢量,得到新的权重矩阵:
[0121][0122]
其中其中为期望求得的适应性权重:
[0123][0124]
上式的经由上述之替换得到之最终权重矢量解为:
[0125][0126]
这时cdma接收机所接受之信号通过阻塞矩阵能够被阻隔完全,使效能提升。
[0127]
优选地,upa数组天线含有m
×
n个全向性天线单元,各天线单元间距为d=0.5λ并且座落在x-y平面上的此时 m=1,2,
…
,m且n=1,2,
…
,n,假设信号源的入射高低角及水平角分别为θ、φ,假设天线的振幅为单位增益,且相位增益为exp{jπ(m-1)μ+(n-1)υ}、μ=sin(θ)cos(φ)、υ=sin(θ)sin(φ);如gsc的数组天线所示,则第(m,n)个天线单元所接收到的信号表示成:
[0128][0129]
将平面型数组输出之信号表示为:
[0130][0131]
上式中{
·
}
t
代表转置、ac(uk)=[1,exp{jπμk},
…
,exp{jπ(m-1)μk}]
t
, ar(υk)=[1,exp{jπυk},
…
,exp{jπ(n-1)υk}]
t
,n为所有天线所收到之噪声所组成之矩阵,为了使自由度提高,将二维均匀平面型天线数组用一维表示,因此输出信号为:
[0132][0133]
此时为第k个使用者的导引向量,定义为 kronecker乘法,为二维数组展开后与时间特征合并之噪声矩阵,假设第k 个使用者就是所欲使用者k=d,入射角度为(μd,υd),此时有k-1个干扰, 并且将所欲信号的导引向量表示为ad。此时将以二阶统计量自相关矩阵表示:
[0134][0135]
理论上,在稳态环境下天线数组输出自相关矩阵应由整体平均得到,但于实际操作上,由时间平均来获得估测的自相关矩阵:
[0136][0137]
其中z为总共观察的位数;
[0138]
将使用空间-时间之特征空间,因此将接收信号之展频码与导引向量再表示成步骤1中公式1.1时空数组形式:
[0139][0140]
其中,其中,为将空间-时间因素合并后所之噪声向量。
[0141]
一种计算机可读存储介质,其上存储有计算机程序,其特征在于:所述计算机程序被处理器执行时实现上述的基于二维空时广义旁瓣相消稳健波束形成算法。
[0142]
该基于二维空时广义旁瓣相消稳健波束形成算法具有以下有益效果:
[0143]
(1)本发明主要使用二维数组在广义旁瓣相消器(generalized sidelobecanceller,gsc)架构下,解决指向误差及信号源数目过度估测问题。首先将文献[11]之算法使用在gsc作指向误差校正,但此方法的问题依旧存在。为使校正能力更为稳健本发明提出新方法,基于特征分析处理之稳健空时广义旁瓣相消器(robust space-time gsc,rst-gsc),此方法利用cdma技术结合二维数组天线,在有指向误差以及信号源过度估测发生时,可自适应让导向矢量有实时校正的能力。
[0144]
(2)本发明算法是在期望信号在指向误差的情况下,可利用我们提出的空时导向矢量算法去调整自适应权重,使得信号保持住,干扰消除、抑制噪声。
附图说明
[0145]
图1:现有技术的广义旁瓣相消器架构图;
[0146]
图2:现有技术完美环境下之二维均匀平面型数组波束方向图;
[0147]
图3:图2中υ=0,变化μ之一维波束方向图;
[0148]
图4:图2中令μ=0,变化υ之一维波束方向图;
[0149]
图5:现有技术指向误差及信号源数目过度估测环境之二维波束方向图;
[0150]
图6:图5中令υ=0,变化μ之ㄧ维波束方向图;
[0151]
图7:图5中令μ=0,变化υ之ㄧ维波束方向图;
[0152]
图8:现有技术稳健广义旁瓣相消器架构图;
[0153]
图9:现有技术稳健广义旁瓣相消器在指向误差环境之二维波束方向图;
[0154]
图10:图9中令υ=0,变化μ之一维波束方向图;
[0155]
图11:图9中令μ=0,变化υ之一维波束方向图;
[0156]
图12:现有技术稳健广义旁瓣相消器在有指向误差及信号源数目过度估测之二维波束方向图;
[0157]
图13:图12中令υ=0,变化μ之一维波束方向图;
[0158]
图14:图12中令μ=0,变化υ之一维波束方向图;
[0159]
图15:图12中令μ=0,变化υ比较稳健广义旁瓣相消器和广义旁瓣相消器的波束方
向图;
[0160]
图16:图12中变化输入数据之位数来观察输出的sinr值示意图;
[0161]
图17:图12中变化期望信号之snr来观察输出的sinr值示意图;
[0162]
图18:图12中变化指向误差观察输出sinr值示意图;
[0163]
图19:本发明稳健二维空时广义旁瓣相消器架构图;
[0164]
图20:本发明rst-gsc令μ=0,变化υ的一维波束方向图;
[0165]
图21:本发明变化输入数据之位数来观察输出的sinr值示意图;
[0166]
图22:本发明变化期望信号之snr来观察输出的sinr值示意图
[0167]
图23:本发明变化指向误差观察输出sinr值示意图;
[0168]
图24:本发明变化干扰角度观察输出sinr值示意图。
具体实施方式
[0169]
下面结合图19至图24,对本发明做进一步说明:
[0170]
以下公式中出现以下参数的含义如下:
[0171]
b(t)
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
数据信号;
[0172]bk
[i]
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
第k个用户的第i个数据位
[0173]
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
匹配滤波器的输出判断;
[0174]bꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
阻塞矩阵;
[0175]
c(t)
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
扩频信号波形;
[0176]cꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
所有用户扩频码所组合而成的矩阵;
[0177]dꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
空间特征之间的相关性;
[0178]ei
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
干扰子空间;
[0179]en
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
噪声子空间;
[0180]es
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
信号子空间;
[0181]fꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
频率;
[0182]hꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
共轭转置;
[0183]iꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
单位矩阵;
[0184]kꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
使用者数目;
[0185]
l
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
扩频码长度;
[0186]mꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
平面行数组天线行数;
[0187]
n(z)
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
白色高斯噪声;
[0188]nꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
平面数组天线列数;
[0189]
r(t)
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
接收端之接收信号;
[0190]rꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
时间处理的自相关矩阵;
[0191]
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
时间-空间自相关矩阵;
[0192]
t
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
时间;
[0193]
t
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
转置;
[0194]
tcꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
扩频切片周期;
[0195]
tcꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
码片的周期时间;
[0196]
t
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
转换矩阵;
[0197]
ωoꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
载波频率;
[0198]wꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
权重向量(矢量);
[0199]
x(t)
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
传送端之传送信号;
[0200]
xk(t)
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
第k个用户在传送端的输出信号;
[0201]
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
接收信号;
[0202]
x(t)
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
调变后信号;
[0203]
xc(t)
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
扩频信号;
[0204]
λ
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
特征值;
[0205]
σ
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
变异数;
[0206]
ω
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
角频率;
[0207]
κ
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
正规化系数;
[0208]
λ
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
特征值矩阵;
[0209]
εkꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
第k个使用者的功率;
[0210]
θ
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
水平方位角;
[0211]
φ
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
高低俯仰角;
[0212]
μ
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
sin(θ)cos(φ);
[0213]
υ
ꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀꢀ
sin(θ)sin(φ)。
[0214]
如图19所示稳健二维空时广义旁瓣相消器。
[0215]
由背景技术中的稳健广义旁瓣相消器可得知,rgsc在有指向误差且信号源数目过度估测的情形下仍有许多缺点,估测并不精确、噪声放大,尤其当snr提高,性能反而逐渐崩溃。因此,本发明改进后提出一种更加稳健的二维空时估测器。
[0216]
稳健二维空时广义旁瓣相消器理论基础:二维空时广义旁瓣相消器使用一基于特征空间之二维空时导向矢量估测器结合gsc,架构图如下图19所示。以下为rst-gsc使用基于特征空间之二维空时导向矢量估测器介绍。
[0217]
由上述式(2.7)可知空时数组系统所接收之信号为:
[0218][0219]
其中空间-时间信号表示为这边定义空时自相关矩阵二维数组所形成p≡vhv,v可表示为v=[v1,v2,
…
,vk]。此时的自相关矩阵p可以以schur形式[5]表示成两个矩阵相乘,例如:p=d
·
rc。
[0220]
前面的d包含了空间特征之间的相关性,例如:而这时的rc为时间处理的自相关矩阵,例如:所以此时将空-时自相关矩阵 (1.2)式之作特征值分解:
[0221][0222]
其中的in为一维度为(mnl-k)
×
(mnl-k)的单位矩阵。此时的us是由v所组成的信号子空间所形成的正交基底。而un为正交于信号子空间的噪声子空间所形成的基底。对角矩阵λs包含了由分解出的k个最大特征值。
[0223]
对于cdma接收机而言,v1中的部份内容是可以被知道,扩频码c1是知道的,但导向矢量并不知道。因此这边使用信号子空间正交于噪声子空间的方法。详细地说,就是使用一单位特征矢量来估测此时
[0224][0225]
上式中i
mnl
为一个维度mnl
×
mnl的单位矩阵,由此可看出q的单位特征矢量能够被拿来当估测正确导向矢量的依据。此时,令h为由q找出之单位特征矢量且hi定义为h的第i个元素,i=1,2,
…
,mnl。由于正确导向矢量ad的第一个元素为1且每个元素的振幅也都为1,且由h可以找到正确之导向矢量,结合上述两条件可以写成下列解最优值之问题
[0226][0227]
这边为第i个元素,经过数学式简化,上式可以重新写成下式
[0228][0229]
re{x}代表取x的实数部份,解出式(3.5)的最优解可以写成一多项式为而为它第ith元素。
[0230]
最后将代入gsc架构中的阻塞矩阵以及权重矢量,得到新的权重矩阵:
[0231][0232]
其中其中为所欲求得的适应性权重:
[0233][0234]
上式的经由上述之替换得到之最终权重矢量解为:
[0235][0236]
这时接收机所接受之信号通过阻塞矩阵能够被阻隔完全,使效能提升。
[0237]
计算机仿真与分析:本发明在gsc架构下使用稳健空时估测方法来校正导向矢量并使用作为波束形成器之权重,仿真实现此估测器是否能准确估出正确导向矢
量。假设一8
×
8的均匀平面型数组,天线之间的距离为0.5λ,此时有4个信号源,分别由角度(μ,υ)=(0,0)、(-0.55,0)、(0.53,0)、(0.57,0)同时入射,而第一个信号源为期望信号,信号强度为snr=10db;其他信号源为干扰,干扰信号为等强度inr=30db。图20、21、22、23及 24为在有指向误差(μ,υ)=(0.2,0)且信号源数目过度估测je=j+1的情形下之模拟图。图20令υ=0,变化μ从-1到+1来观察一维波束方向图,此图并与gsc、rgsc作比较。由图可看出rst-gsc对导向矢量可以有完美估测且不影响干扰的抑制能力,而gsc以及rgsc都有期望信号消除的问题。图21变化输入数据之位数由100到103,藉由输出的sinr来观察不同方法的收敛速度并加入完美环境下的gsc作比较。由此图可看出rst-gsc在不影响收敛速度的情况下,大约在102位就能够收敛,且与完美环境下的gsc有一样稳健的效能。图22变化期望信号之snr值由0到20来观察不同的snr 对输出的sinr是否有影响,由于rst-gsc的准确估测,因此效能仍然逼近完美的gsc,而其他两个方法在此环境下性能将会崩溃。图23变化指向误差μ从-2到+2以观察不同方法对抗指向误差之能力,可看出rst-gsc对抗指向误差能力非常好且稳定:而在snr提高的情况下,可看出rgsc对抗指向误差的能力逐渐衰减。图24变化第三个干扰源的角度μ从-1到+1,藉由输出sinr值评估当干扰由不同角度入射时是否对系统效能有影响。可看出只有当干扰与期望信号由同一角度入射,此时阻塞矩阵会将此干扰信号当成期望信号一同阻隔,造成系统效能崩溃,而当干扰由不同角度入射时,即使双干扰源由同一角度入射对系统也不会有太大的影响。
[0238]
本发明作了稳健广义旁瓣相消器及稳健空时广义旁瓣相消器的基本理论探讨,且在假设智能型天线系统有信号源数目过度估测、指向误差的环境下作了性能比较。由结果可得知稳健空时广义旁瓣相消器对于导向矢量估测有很稳健的能力,因此在信号源数目过度估测、指向误差很大的环境下系统依然能够保持良好效能。最后由模拟图与本算法作比较可得知可解决问题并提升智能型天线系统效能。
[0239]
对于本领域技术人员而言,显然本发明不限于上述示范性实施例的细节,而且在不背离本发明的精神或基本特征的情况下,能够以其他的具体形式实现本发明。因此,无论从哪一点来看,均应将实施例看作是示范性的,而且是非限制性的,本发明的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的等同要件的含义和范围内的所有变化囊括在本发明内。不应将权利要求中的任何附图标记视为限制所涉及的权利要求。
[0240]
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的程序可存储于一非易失性计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,所述的存储介质可为磁盘、光盘、只读存储记忆体(read-only memory,rom)等。
[0241]
如此处所使用的对存储器、存储、数据库或其它介质的任何引用可包括非易失性和/或易失性存储器。合适的非易失性存储器可包括只读存储器 (rom)、可编程rom(prom)、电可编程rom(eprom)、电可擦除可编程rom (eeprom)或闪存。易失性存储器可包括随机存取存储器(ram),它用作外部高速缓冲存储器。作为说明而非局限,ram以多种形式可得,诸如静态ram (sram)、动态ram(dram)、同步dram(sdram)、双数据率sdram(ddrsdram)、增强型sdram(esdram)、同步链路(synchlink)dram(sldram)、存储器总线(rambus)直接ram(rdram)、直接存储器总线动态ram(drdram)、以及存储器总线动态ram(rdram)。
[0242]
上面结合附图对本发明进行了示例性的描述,显然本发明的实现并不受上述方式
的限制,只要采用了本发明的方法构思和技术方案进行的各种改进,或未经改进将本发明的构思和技术方案直接应用于其它场合的,均在本发明的保护范围内。
技术特征:1.一种基于二维空时广义旁瓣相消稳健波束形成算法,包括以下步骤:步骤1、当智能天线系统接收器发生指向误差或是信号源过度估测的情况下,将使用空间-时间之特征空间,因此将接收信号之扩频码与导向矢量再表示成时空数组所接收之信号为:其中其中为将空间-时间因素合并后所之噪声矢量;而时空信号所形成的自相关矩阵表示为:其中,空间-时间信号表示为这边定义空时自相关矩阵二维数组所形成p≡v
h
v,v可表示为v=[v1,v2,
…
,v
k
];此时的自相关矩阵p以schur形式表示成两个矩阵相乘,例如:p=d
·
r
c
;d包含了空间特征之间的相关性,例如:而这时的r
c
为时间处理的自相关矩阵,例如:所以此时将空-时自相关矩阵(1.2)式之作特征值分解:其中的i
n
为一维度为(mnl-k)
×
(mnl-k)的单位矩阵,此时的u
s
是由v所组成的信号子空间所形成的正交基底;而u
n
为正交于信号子空间的噪声子空间所形成的基底;对角矩阵λ
s
包含了由分解出的k个最大特征值;步骤2、对于cdma接收机而言,v1中的部份内容是能够被知道,扩频码c1是知道的,但导向矢量并不知道;因此这边使用信号子空间正交于噪声子空间的方法;详细地说,就是使用一单位特征矢量来估测此时:上式中i
mnl
为一个维度mnl
×
mnl的单位矩阵,由此可看出q的单位特征矢量能够被拿来当估测正确导向矢量的依据;此时,令h为由q找出之单位特征矢量且h
i
定义为h的第i个元素,i=1,2,
…
,mnl;由于正确导向矢量a
d
的第一个元素为1且每个元素的振幅也都为1,且由h可以找到正确之导向矢量,结合上述两条件写成下列解最优值之问题:这边为第i个元素,经过数学式简化,上式可以重新写成下式:
re{x}代表取x的实数部份,解出式1.6的最优解写成一多项式为而为它第ith元素;步骤3、将代入gsc架构中的阻塞矩阵以及权重矢量,得到新的权重矩阵:其中其中为期望求得的适应性权重:上式的经由上述之替换得到之最终权重矢量解为:这时cdma接收机所接受之信号通过阻塞矩阵能够被阻隔完全,使效能提升。2.根据权利要求1所述的基于二维空时广义旁瓣相消稳健波束形成算法,其特征在于:upa数组天线含有m
×
n个全向性天线单元,各天线单元间距为d=0.5λ并且座落在x-y平面上的此时m=1,2,
…
,m且n=1,2,
…
,n,假设信号源的入射高低角及水平角分别为θ、φ,假设天线的振幅为单位增益,且相位增益为exp{jπ(m-1)μ+(n-1)υ}、μ=sin(θ)cos(φ)、υ=sin(θ)sin(φ);如gsc的数组天线所示,则第(m,n)个天线单元所接收到的信号表示成:将平面型数组输出之信号表示为:上式中{
·
}
t
代表转置、a
c
(u
k
)=[1,exp{jπμ
k
},
…
,exp{jπ(m-1)μ
k
}]
t
,a
r
(υ
k
)=[1,exp{jπυ
k
},
…
,exp{jπ(n-1)υ
k
}]
t
,n为所有天线所收到之噪声所组成之矩阵,为了使自由度提高,将二维均匀平面型天线数组用一维表示,因此输出信号为:此时为第k个使用者的导引向量,定义为kronecker乘法,为二维数组展开后与时间特征合并之噪声矩阵,假设第k个使用者就是所欲使用者k=d,入射角度为(μ
d
,υ
d
),此时有k-1个干扰,并且将所欲信号的导引向量表示为a
d
;此时将以二阶统计量自相关矩阵表示:
理论上,在稳态环境下天线数组输出自相关矩阵应由整体平均得到,但于实际操作上,由时间平均来获得估测的自相关矩阵:其中z为总共观察的位数;将使用空间-时间之特征空间,因此将接收信号之展频码与导引向量再表示成步骤1中公式1.1时空数组形式:其中,其中,为将空间-时间因素合并后所之噪声向量。3.一种计算机可读存储介质,其上存储有计算机程序,其特征在于:所述计算机程序被处理器执行时实现权利要求1或2所述的基于二维空时广义旁瓣相消稳健波束形成算法。
技术总结本发明涉及一种基于二维空时广义旁瓣相消稳健波束形成算法,主要使用二维数组在广义旁瓣相消器(Generalized Sidelobe Canceller,GSC)架构下,解决指向误差及信号源数目过度估测问题。首先将现有技术之算法使用在GSC作指向误差校正,但此方法的问题依旧存在。为使校正能力更为稳健本发明提出新方法,基于特征分析处理之稳健空时广义旁瓣相消器(RobustSpace-Time GSC,RST-GSC),此方法利用CDMA技术结合二维数组天线,在有指向误差以及信号源过度估测发生时,可自适应让导向矢量有实时校正的能力。实时校正的能力。实时校正的能力。
技术研发人员:连振宇 张颢原
受保护的技术使用者:宁波绮色佳金属制品有限公司
技术研发日:2022.07.26
技术公布日:2022/11/1