eda)都有被用来产生对流尺度初值扰动。然而,该方法主要用来刻画初始分析场中观测信息不确定性,并不能很好刻画大尺度初值不确定性信息,常导致预报后期集合离差不足,尤其在大尺度上。
13.近来,enkf与etkf也被应用于对流尺度初值扰动的生成。enkf与etkf在资料同化中有较为成熟的应用,但其在对流尺度集合预报中成熟应用还不多。对于对流尺度集合预报的侧边界扰动,一般通过粗分辨率的全球或有限区域模式集合预报场嵌套获得,即降尺度方法。
14.为了生成对流尺度集合预报的模式扰动,国际上常继承使用全球或有限区域集合预报的模式扰动方法。例如,使用sppt,spp或mp;但单独使用这些方法并不能完全代表对流尺度的模式不确定性,常导致集合离差不足。
15.由于大尺度扰动方法以及单一来源单一类型扰动方法仍不足以合适地构造对流尺度集合预报系统,因此本技术提出一种新的技术方案。
技术实现要素:16.为了弥补大尺度以及单一来源单一类型扰动方法的不足,满足对流尺度集合预报需求,本技术提供一种基于多源多类型扰动组合的对流尺度集合预报方法及系统。
17.第一方面,本技术提供一种基于多源多类型扰动组合的对流尺度集合预报方法,采用如下的技术方案:
18.一种基于多源多类型扰动组合的对流尺度集合预报方法,包括以下步骤:
19.步骤一、基于中尺度grapes模式,建立包含初值、侧边界与模式物理扰动的中尺度集合预报逻辑,并以模式积分生成气象要素预报,为下一个对流尺度集合预报的初值与侧边界分析提供降尺度扰动数据;
20.步骤二、基于对流尺度grapes模式,建立包含初值、侧边界与模式物理扰动的对流尺度集合预报逻辑,并以模式积分生成气象要素预报场。
21.可选的,所述中尺度集合预报逻辑,其包括:控制成员分析与预报;以及,扰动成员分析与预报;
22.所述控制成员分析与预报、扰动成员分析与预报分别包括:循环更新资料同化分析和中尺度数值模式预报,生成分析场与预报场;
23.其中,分析场由6小时的循环同化获得,而预报场由24小时的模式积分获得。
24.可选的,所述循环更新资料同化分析采用三维变分分析方法,并采用多网格技术与部分循环分析同化策略。
25.可选的,所述三维变分分析方法通过grapes 3d-var模块执行,且以流函数、势函数、非平衡exner气压与假相对湿度作为控制变量;
26.过程中的背景误差协方差由新息向量方法估计得到,并经过调试以适应中尺度同化分析;
27.其中,所同化的观测资料主要包括探空、地面、船舶、风廓线雷达与飞机报文;
28.所述三维变分分析方法求解的惩罚函数为:
29.30.其中,xa和xb分别表示分析场与背景场,yo表示观测场,而h表示观测算子; b和r分别表示背景误差协方差与观测误差协方差。
31.可选的,所述多网格技术包括:
32.将背景场从原来模式格点投影到原格点数一半的粗网格格点上,采用粗网格背景误差协方差设置进行三维变分分析,获得粗网格分析场;
33.将粗网格分析场插值到原来模式格点作为新的细网格背景场,采用细网格背景误差协方差设置进行三维变分分析,获得细网格分析场,并作为最终分析场。
34.可选的,所述部分循环分析包括:
35.在分析时刻前6小时,以水平分辨率为0.5
°
*0.5
°
的全球数值模式ncepglobal forecast system的6小时预报场作为背景场;其中,全球数值模式ncepglobal forecast system称为gfs;
36.经过多网格三维变分分析方法同化分析,获得该时刻分析场,并以gfs预报场作为中尺度数值模式的侧边界进行3小时预报;
37.以3小时预报场作为背景场,间隔3小时进行多网格三维变分分析;
38.经过两轮循环同化,获得分析时刻分析场;
39.以分析时刻分析场作为初始场,以gfs的12-36小时预报场作为侧边界,采用中尺度数值模式进行24小时预报,获得中尺度集合预报控制预报场。
40.可选的,所述扰动成员分析与预报,其包括:
41.1)、在分析时刻前6小时,采用三维变分分析的背景误差协方差矩阵,生成随机平衡扰动;
42.将随机平衡扰动叠加到gfs的6-12小时预报场,获得扰动成员进行循环同化所需的冷启动背景场与侧边界条件;
43.进行间隔3小时的循环同化,并获得分析时刻的扰动初始场;
44.2)、将随机平衡扰动叠加到gfs的12-36小时预报场,获得扰动成员进行模式积分所需的扰动侧边界条件;
45.基于分析时刻的扰动初始场,以及gfs提供的扰动侧边界条件,进行24小时的模式积分获得扰动成员预报场;
46.3)、针对微物理与边界层过程分别挑选不同的参数化方案,并进行不同组合;
47.假定扰动成员为16个,则针对16个扰动成员,分别选择不同的参数化方案组合,且成员1-4为wsm6与mrf组合;成员5-8为wsm6与ysu组合;成员9-12为 wsm5与mrf组合;成员13-16为wsm5与ysu组合;
48.采用sppt方案,在模式物理过程总倾向上叠加标准差为0.5,空间相关尺度为 100公里,时间相关尺度为6小时的随机扰动。
49.可选的,所述对流尺度集合预报逻辑,其包括:
50.控制成员分析与预报;
51.初值扰动生成;
52.侧边界扰动生成;
53.模式物理扰动生成;以及,
54.模式积分预报,采用包含多源多类型扰动组合的初值、侧边界与模式进行24小时
积分,获得对流尺度集合预报系统的扰动成员预报场;
55.其中,所述控制成员分析与预报包括:循环更新资料同化分析和对流尺度数值模式预报,生成分析场与预报场;分析场由6小时的循环同化获得,而预报场由24小时的模式积分获得;且,与中尺度集合预报逻辑中的三维变分分析方法不同的是:
56.在三维变分分析中所用的背景误差协方差经过调试以适应对流尺度同化分析;
57.以分析时刻分析场作为初始场,以中尺度数值模式24小时预报场作为侧边界,采用对流尺度数值模式进行24小时预报,获得对流尺度集合预报控制成员预报场。
58.可选的,所述扰动成员的生成,其满足公式:
[0059][0060]
其中,ef(t)表示t时刻扰动成员预报场,ed(0)表示分析时刻控制成员初始场, ad和pd分别表示控制预报的模式动力与物理倾向,bd表示控制预报的侧边界条件, de表示初值扰动,dp表示模式物理扰动,db表示侧边界扰动,而和分别表示从初始时刻到t时刻的时间积分与侧边界强迫。
[0061]
可选的,所述初值扰动生成满足公式:
[0062]
de=α1idscp+α2edap+α3tlap+tcp+tsp;
[0063]
其中,idscp,edap,tlap,top和tsp分别表示降尺度扰动、资料同化集合扰动、时间滞后扰动、地形扰动与海表温度扰动,而α1,α2和α3分别表示idscp,edap和 tlap的权重系数。
[0064]
可选的,所述侧边界扰动生成包括:
[0065]
1)、基于中尺度集合预报逻辑的降尺度扰动;
[0066]
3)、振幅随模式积分增大的随机平衡扰动。
[0067]
可选的,所述模式物理扰动生成包括:
[0068]
1)、与中尺度集合预报逻辑相同的多物理参数化方案;
[0069]
2)、针对微物理参数化方案的雨截断参数与边界层参数化方案的临界理查森数分别进行不同的量值设置;
[0070]
3)、与中尺度集合预报逻辑相同的sppt方案,且,不同的是:当前采用空间相关尺度为50公里,时间相关尺度为1小时的随机扰动。
[0071]
可选的,中尺度集合预报系统,其基于中尺度grapes模式建立,包含初值、侧边界与模式物理扰动,且包括:控制成员分析与预报模块;以及,扰动成员分析与预报模块;其用于通过模式积分生成气象要素预报,为对流尺度集合预报的初值与侧边界提供降尺度扰动;
[0072]
对流尺度集合预报系统,其基于对流尺度grapes模式建立,包含初值、侧边界与模式物理扰动,且包括:控制成员分析与预报模块、初值扰动模块、侧边界扰动模块、模式物理扰动模块以及模式积分模块,且用于通过模式积分生成气象要素预报场。
[0073]
第二方面,本技术提供一种多源多类型扰动组合的对流尺度集合预报系统,采用如下的技术方案:
[0074]
一种多源多类型扰动组合的对流尺度集合预报系统,包括:
[0075]
中尺度集合预报系统,其基于中尺度grapes模式建立,包含初值、侧边界与模式物理扰动,且包括:控制成员分析与预报模块;以及,扰动成员分析与预报模块;其用于通过模式积分生成气象要素预报,为对流尺度集合预报的初值与侧边界提供降尺度扰动;
[0076]
对流尺度集合预报系统,其基于对流尺度grapes模式建立,包含初值、侧边界与模式物理扰动,且包括:控制成员分析与预报模块、初值扰动模块、侧边界扰动模块、模式物理扰动模块以及模式积分模块,且用于通过模式积分生成气象要素预报场。
[0077]
综上所述,本技术包括以下至少一种有益技术效果:考虑了对流尺度数值模式预报误差的主要来源(即初值、侧边界与模式物理),以及同一来源的不同类型扰动方法的设计特点。对于初值扰动,降尺度扰动主要代表了粗分辨率驱动模式(即中尺度数值模式)初始场包含的大尺度不确定性,资料同化集合扰动代表了对流尺度数值模式资料同化过程的分析不确定性,时间滞后扰动代表了对流尺度数值模式不同起报时间及不同预报时效的预报不确定性,地形扰动代表了对流尺度数值模式对真实地形描述的不确定性,而海表温度扰动代表了对流尺度数值模式对真实海表温度描述的不确定性。对于侧边界扰动,降尺度扰动主要代表了粗分辨率驱动模式(即中尺度数值模式)侧边界条件包含的大尺度不确定性,而随模式积分扩张的随机平衡扰动则代表了侧边界驱动场随机不确定性。对于模式物理扰动,多物理参数化与参数扰动属于“非随机”类扰动方法,代表了模式物理过程参数化方案设计及其中的参数设置的不确定性,而随机扰动物理参数化倾向则属于“随机”类扰动方法,代表了模式物理过程来自次网格尺度强迫的随机不确定性。因此,多源多类型扰动组合技术相比单一来源或单一类型扰动技术能更全面代表数值模式预报不确定性,从而具有更好的预报效果。
附图说明
[0078]
图1是本技术的方法的流程示意图;
[0079]
图2是本技术的中尺度集合预报系统的结构示意图;
[0080]
图3是本技术的对流尺度集合预报系统的结构示意图;
[0081]
图4(a)为中尺度集合预报系统的模式区域,(b)为对流尺度集合预报系统的模式区域,且(b)中边框表示图6降水检验区域;
[0082]
图5为不同集合预报试验降水扰动能量与控制预报误差能量比值图;
[0083]
图6为不同集合预报试验1小时累积降水预报crps评分图。
具体实施方式
[0084]
以下结合附图1-6对本技术作进一步详细说明。
[0085]
本技术实施例公开一种基于多源多类型扰动组合的对流尺度集合预报方法。
[0086]
需要注意的是,本技术基于华南区域气象中心所使用的grapes模式开发多源多类型扰动组合方法,并建立包含1个控制成员与16个扰动成员的对流尺度集合预报系统;其中,提出的多源多类型扰动组合方法是通过在控制成员基础上叠加多种不同类型的初值、侧边界与模式物理扰动的方式实现的。
[0087]
参照图1,基于多源多类型扰动组合的对流尺度集合预报方法包括以下步骤:
[0088]
步骤一、基于(水平分辨率约9公里的)中尺度grapes模式,建立包含初值、侧边界与模式物理扰动的中尺度集合预报逻辑,并以模式积分生成气象要素预报,为下一个对流尺度集合预报的初值与侧边界分析提供降尺度扰动数据;
[0089]
步骤二、基于(水平分辨率约3公里的)对流尺度grapes模式,建立包含初值、侧边界与模式物理扰动的对流尺度集合预报逻辑,并以模式积分生成气象要素预报场。
[0090]
本技术的目的,根据(如:华南)降水预报误差来源以及多种不同来源不同类型集合扰动方法特点,针对初值、侧边界与模式物理采用多种不同类型扰动方法进行组合,使得集合预报的预报扰动能更好地刻画预报不确定性在不同时空尺度上的特征,提高(如:华南)降水集合预报效果。其可克服单一来源或单一类型扰动方法预报不确定性刻画不全面的问题。
[0091]
以下实施例,本技术以系统的形式做解释说明:
[0092]
基于多源多类型扰动组合的对流尺度集合预报系统包括:
[0093]
1)、参照图2,中尺度集合预报系统(及预报),其基于中尺度grapes模式建立,包含初值、侧边界与模式物理扰动,且包括:
[0094]
控制成员分析与预报模块;以及,扰动成员分析与预报模块。
[0095]
该系统用于通过模式积分生成气象要素预报,为对流尺度集合预报的初值与侧边界提供降尺度扰动。
[0096]
2)、参照图3,对流尺度集合预报系统(及预报),其基于对流尺度grapes模式建立,包含初值、侧边界与模式物理扰动,且包括:
[0097]
控制成员分析与预报模块;
[0098]
初值扰动模块;
[0099]
侧边界扰动模块;
[0100]
模式物理扰动模块;以及,
[0101]
模式积分模块。
[0102]
该系统用于通过模式积分生成气象要素预报场。
[0103]
以下对中尺度集合预报系统具体进行解释:
[0104]
1、控制成员分析与预报模块。该模块由循环更新资料同化系统(chaf)与中尺度数值模式两部分组成。分析场由6小时的循环同化获得,而预报场由24小时的模式积分获得。
[0105]
中尺度grapes模式是非静力模式,采用半隐式半拉格朗日时间积分方案,水平方向为arakawa-c跳点的经纬网格;水平分辨率为0.09
°
*0.09
°
,模式范围如图4a所示,包含385*305个水平格点;垂直方向为55层,最高层高度为35公里。积云对流参数化采用sas方案。
[0106]
chaf采用三维变分(3d-var)分析方法,并采用多网格(multigrid)技术与部分循环 (partial cycling)同化策略。
[0107]
1)、3d-var分析方法使用grapes 3d-var模块。该模块采用流函数、势函数、非平衡exner气压与假相对湿度作为控制变量;背景误差协方差由新息向量方法估计得到并经过调试以适应中尺度同化分析;所同化的观测资料主要包括探空、地面、船舶、风廓线雷达与飞机报文。3d-var分析求解的惩罚函数(cost function)如下:
[0108][0109]
其中,xa和xb分别表示分析场与背景场,yo表示观测场,而h表示观测算子; b和r分别表示背景误差协方差与观测误差协方差。
[0110]
2)、多网格技术的具体实施包括两个步骤:首先,将背景场(是一个包含各种气象要素的空间分布场)从原来模式格点投影到原格点数一半的粗网格格点上,采用粗网格背景误差协方差设置进行3d-var分析,获得粗网格分析场;其次,将粗网格分析场插值到原来模式格点作为新的细网格背景场,采用细网格背景误差协方差设置进行 3d-var分析,获得细网格分析场,并作为最终分析场。
[0111]
3)、部分循环分析的具体实施包括两个步骤:首先,在分析时刻(每天的 0000/1200utc)前6小时,以水平分辨率为0.5
°
*0.5
°
的全球数值模式ncep globalforecast system(gfs)(指美国国家环境预测中心(ncep)制作的一个天气预报模型)的 6小时预报场作为背景场,经过多网格3d-var同化分析,获得该时刻分析场,并以 gfs预报场作为中尺度数值模式的侧边界进行3小时预报;随后,以3小时预报场作为背景场,间隔3小时进行多网格3d-var同化分析;最后,经过两轮循环同化,获得分析时刻分析场。
[0112]
以分析时刻分析场作为初始场,以gfs的12-36小时预报场作为侧边界,采用中尺度数值模式进行24小时预报,获得中尺度集合预报控制预报场。
[0113]
2、扰动成员分析与预报模块:
[0114]
该模块所用的3d-var资料同化系统与中尺度数值模式与控制成员的相同。与控制成员相同,16个扰动成员都通过6小时的循环同化获得分析场,并通过24小时的模式积分获得扰动成员预报场。扰动成员的生成包括以下内容:
[0115]
1)、在分析时刻前6小时,采用3d-var背景误差协方差矩阵,生成随机平衡扰动;将随机平衡扰动叠加到gfs的6-12小时预报场,获得扰动成员进行循环同化所需的冷启动背景场与侧边界条件;随后,进行间隔3小时的循环同化,并获得分析时刻的扰动初始场。
[0116]
2)、首先,将随机平衡扰动叠加到gfs的12-36小时预报场,获得扰动成员进行模式积分所需的扰动侧边界条件;接着,基于分析时刻的扰动初始场,以及gfs提供的扰动侧边界条件,进行24小时的模式积分获得扰动成员预报场。
[0117]
3)、针对中尺度数值模式,在6小时的循环同化与24小时的模式预报期间,都实施了多物理参数化(mp)与随机扰动参数化倾向(sppt)组合的模式扰动方案。具体实施方案包括:首先,针对微物理与边界层过程分别挑选不同的参数化方案,并进行不同组合;其次,针对16个扰动成员,分别选择不同的参数化方案组合;参数化方案组合具体地:
[0118]
成员1-4为wrf single-moment 6-class(wsm6)与medium-range forecast(mrf)组合,成员5-8为wsm6与yonsei university(ysu)组合,成员9-12为 wrf single-moment 5-class(wsm5)与mrf组合,成员13-16为wsm5与ysu组合;
[0119]
接着,采用sppt方案,在模式物理过程总倾向上叠加标准差为0.5,空间相关尺度为100公里,时间相关尺度为6小时的随机扰动。
[0120]
在对流尺度集合预报系统中,上述扰动成员的生成,是采用多源多类型扰动组合方法,通过在控制成员基础上叠加多种不同类型的初值、侧边界与模式物理扰动的方式实现。相应的公示表达为:
[0121][0122]
其中,ef(t)表示t时刻扰动成员预报场,ed(0)表示分析时刻(0000/1200utc)控制成员初始场,ad和pd分别表示控制预报的模式动力与物理倾向,bd表示控制预报的侧边界条件,de表示初值扰动,dp表示模式物理扰动,db表示侧边界扰动,而和分别表示从初始时刻到t时刻的时间积分与侧边界强迫。
[0123]
以下对对流尺度集合预报系统具体进行解释:
[0124]
1、控制成员分析与预报模块。该模块由循环更新资料同化系统(chaf)与对流尺度数值模式两部分组成。分析场由6小时的循环同化获得,而预报场由24小时的模式积分获得。
[0125]
对流尺度模式为grapes区域版本。该模式是非静力模式,采用半隐式半拉格朗日时间积分方案,水平方向为arakawa-c跳点的经纬网格;水平分辨率为0.03
°
*0.03
°
,模式范围如图4b所示,包含634*434个水平格点;垂直方向为55层,最高层高度为 28公里。不采用积云对流参数化方案。
[0126]
与中尺度集合预报系统chaf不同的是,对流尺度集合预报系统chaf在3d-var 分析中所用的背景误差协方差经过调试以适应对流尺度同化分析。
[0127]
以分析时刻分析场作为初始场,以中尺度数值模式24小时预报场作为侧边界,采用对流尺度数值模式进行24小时预报,获得对流尺度集合预报控制成员预报场。
[0128]
2、初值扰动模块。在多源多类型扰动组合方法里,初值扰动由5种不同类型的扰动方法生成的初值扰动经过线性组合而成。具体公式表达为:
[0129]
de=α1idscp+α2edap+α3tlap+top+tsp;
[0130]
其中,idscp,edap,tlap,top和tsp分别表示降尺度(downscaling)扰动、资料同化集合(ensemble of data assimilation)扰动、时间滞后(time-lagged)扰动、地形 (topography)扰动与海表温度(surface temperature)扰动,而α1,α2和α3分别表示 idscp,edap和tlap的权重系数。
[0131]
对于上述的每一种初值扰动,具体计算步骤如下:
[0132]
2-1)、降尺度扰动。首先,利用中尺度集合预报的16个扰动成员的初始场计算其平均值(mean);接着,将中尺度集合预报的16个扰动成员的初始场分别减去mean,获得16个初值扰动场;最后,将16个初值扰动场从中尺度数值模式的格点插值到对流尺度数值模式的格点。
[0133]
2-2)、资料同化集合扰动。首先,针对中尺度集合预报系统扰动成员的6小时的循环同化,将其在2100/0900utc时刻的3小时预报场插值到对流尺度数值模式格点,生成对流尺度集合预报扰动成员进行3小时循环同化所需的首个扰动背景场;接着,通过3d-var分析获得首个扰动分析场,并基于该扰动分析场进行3小时模式积分,获得分析时刻(0000/1200utc)的扰动背景场;随后,针对分析时刻的扰动背景场,通过 3d-var分析获得分析时刻的扰动分析场;最后,针对分析时刻的扰动分析场,计算其平均值(mean),并将16个扰动分析场分别减去mean,获得16个初值扰动场。此外,在3小时循环同化中,对流尺度数值模式
都实施了多物理参数化(mp)与随机扰动参数化倾向(sppt)组合的模式扰动方案。具体实施方案将在下文介绍。
[0134]
2-3)、时间滞后扰动。对流尺度集合预报的控制成员被用于生成时间滞后扰动,以初始时刻为0000utc的扰动生成为例。首先,利用前一天0000utc起报的控制成员的21,22,23与24小时预报场获得4次时间滞后预报;其次,利用前一天1200utc 起报的控制成员的9,10,11,12,13,14与15小时预报场获得7次时间滞后预报;接着,利用当天0000utc起报的控制成员的1,2和3小时预报场获得3次时间滞后预报;随后,针对控制成员的6小时循环同化,将其在前一天2100utc起报的2与3小时预报场也作为时间滞后预报;最后,针对16次时间滞后预报,计算其平均值(mean),并将16个时间滞后预报分别减去mean,获得16个初值扰动场。
[0135]
2-4)、地形扰动。首先,针对对流尺度数值模式,将平均值为0而标准差为300 米的高斯分布随机扰动叠加到地形高度数据(扰动振幅约束在450米内以避免不合理扰动;若叠加扰动后地形高度为负值则保持原有地形高度);接着,针对16个扰动地形高度数据,将控制成员在初始时刻(0000/1200utc)分析场分别进行插值,获得 16个包含地形扰动的初始场;最后,针对16个包含地形扰动的初始场,计算其平均值(mean),并将16个包含地形扰动的初始场分别减去mean,获得16个初值扰动场。
[0136]
2-5)、海表温度扰动。针对对流尺度数值模式,将平均值为0而标准差为2k的高斯分布随机扰动叠加到海表温度数据[对于0000(1200)utc时刻的扰动成员,扰动振幅约束在2(1)倍标准差内以避免过大扰动]。
[0137]
2-6)、对于idscp,edap,tlap和top,模式变量纬向风u,经向风v,exner气压π,位温θ和比湿q都进行扰动。
[0138]
其中,如果扰动的湿度达到不合理量值或超过临界过饱和值,那么θ和q将不扰动。为了避免过度扰动引起数值计算不稳定,idscp,edap和tlap的权重系数需要进一步确定,而top则因量值相对较小将其权重系数设置为1。
[0139]
对于idscp,edap和tlap的权重系数,采用以下步骤进行确定:
[0140]
2-6-1)、针对某一类型扰动,采用多变量经验正交函数(multivariate empiricalorthogonal function;mv-eof)分析方法对多个变量(即u,v,π,θ和q)联合的扰动值进行分析。针对某一垂直层次,将传统mv-eof分析中的时间维度替换为集合成员维度。
[0141]
2-6-2)、针对每一个垂直层次,计算方差贡献大于90%的主模态的特征值。
[0142]
2-6-3)、定义idscp,edap和tlap在层次k的特征值分别是和 (k=1,2,
…
,55)。α1,α2和α3在层次k的初估值βk定义为:
[0143][0144]
其中,和分别表示三个特征值(即和)的最大值、最小值与总和。
[0145]
2-6-4)、计算和在所有垂直层的平均值,并将其定义为idscp,edap 和tlap的平均特征值。α1,α2和α3在层次k的值定义为:
[0146][0147]
其中,表示三个平均特征值(即和)的最大值,而βi是为了保持三类扰动对总扰动贡献相对均衡而设置的调整系数。具体而言,为了增加dscp的贡献,β1设置为1.2,而β2和β3设置为0.3。
[0148]
3、侧边界扰动模块。在多源多类型扰动组合方法里,侧边界扰动由2种不同类型的扰动方法生成的侧边界扰动组合而成,其实施包括两个步骤:
[0149]
3-1)、利用中尺度集合预报系统扰动成员的24小时预报场,获得包含降尺度扰动的侧边界条件lbc_dscp。
[0150]
3-2)、首先,采用3d-var背景误差协方差矩阵,生成随机平衡扰动;其次,将随机平衡扰动的振幅乘以随模式积分增大的扩张系数;最后,将随机平衡扰动叠加到降尺度扰动的侧边界条件lbc_dscp。
[0151]
4、模式物理扰动模块。在多源多类型扰动组合方法里,模式物理扰动由3种不同类型的扰动方法组合而成。
[0152]
4-1)、多物理参数化(mp)。首先,针对微物理与边界层过程分别挑选不同的参数化方案,并进行不同组合;其次,针对16个扰动成员,分别选择不同的参数化方案组合(成员1-4为wsm6与mrf组合,成员5-8为wsm6与ysu组合,成员9-12为 wsm5与mrf组合,成员13-16为wsm5与ysu组合)。
[0153]
4-2)、参数扰动(pp)。针对微物理参数化方案中的雨截断参数(rain interceptparameter;n
0r
)与边界层参数化方案中的临界理查森数(critical richardson number;ric),对其进行不同量值的设置。
[0154]
具体地说,在wsm6/mrf,wsm6/ysu,wsm5/mrf和wsm5/ysu方案里, n
0r
/ric的默认值是8*106/0.5,该默认设置被用于成员1,5,9和13;对于每一种组合方案,剩下的3个成员所用的n
0r
/ric设置为8*105/0.5,8*107/0.5和8*106/1.0。
[0155]
4-3)、随机扰动参数化倾向fsppt)。在模式物理过程总倾向上叠加标准差为0.5,空间相关尺度为50公里,时间相关尺度为1小时的随机扰动;并且,在地面以上500 米内以及气压小于50hpa的高度层上,模式物理过程总倾向不实施随机扰动。
[0156]
5)、模式积分模块。采用包含多源多类型扰动组合的初值、侧边界与模式进行 24小时积分,获得对流尺度集合预报系统的扰动成员预报场。
[0157]
综上所述,本技术针对初值、侧边界与模式物理分别实施了多种不同类型扰动组合的集合扰动技术,并基于我国自主研发的grapes模式建立了包含1个控制成员与 16个扰动成员的覆盖华南地区的对流尺度集合预报系统。
[0158]
多源多类型扰动组合技术考虑了对流尺度数值模式预报误差的主要来源(即初值、侧边界与模式物理),以及同一来源的不同类型扰动方法的设计特点。对于初值扰动,降尺度扰动主要代表了粗分辨率驱动模式(即中尺度数值模式)初始场包含的大尺度不确定性,资料同化集合扰动代表了对流尺度数值模式资料同化过程的分析不确定性,时间滞后扰动代表了对流尺度数值模式不同起报时间及不同预报时效的预报不确定性,地形扰动代表了对流尺度数值模式对真实地形描述的不确定性,而海表温度扰动代表了对流尺度数值模式对真实海表温度描述的不确定性。对于侧边界扰动,降尺度扰动主要代表了粗分辨率
驱动模式(即中尺度数值模式)侧边界条件包含的大尺度不确定性,而随模式积分扩张的随机平衡扰动则代表了侧边界驱动场随机不确定性。对于模式物理扰动,多物理参数化与参数扰动属于“非随机”类扰动方法,代表了模式物理过程参数化方案设计及其中的参数设置的不确定性,而随机扰动物理参数化倾向则属于“随机”类扰动方法,代表了模式物理过程来自次网格尺度强迫的随机不确定性。因此,多源多类型扰动组合技术相比单一来源或单一类型扰动技术能更全面代表数值模式预报不确定性,从而具有更好的预报效果。
[0159]
参照图5和图6,其为结合具体试实施的效果:
[0160]
其中,图5计算了降水预报扰动能量与控制预报误差能量的比值在不同空间尺度 (meso-α与meso-β分别表示中α与中β尺度)的情况。对于合理的集合扰动,扰动能量应该与误差能量相近;若扰动能量大于误差能量,则表示集合扰动过大,高估了预报不确定性;若扰动能量小于误差能量,则表示集合扰动不足,低估了预报不确定性。
[0161]
由图5a可以看到,对于初值扰动,单独使用dscp,edap或tlap时,集合扰动在中α尺度明显低估了预报不确定性,而中β尺度则略高估了预报不确定性;相比单一类型初值扰动,将不同类型初值扰动进行组合的icp试验的集合扰动能明显更好地估计中α尺度预报不确定性(更接近1),而对于中β尺度预报确定性的高估也与单一类型的相近。由图5b可以看到,对于模式物理扰动,单独使用sppt或ppmp(即 pp与mp方案的组合)时,集合扰动在中α与中β尺度都低估了预报不确定性;相比单一类型模式物理扰动,将不同类型模式物理扰动进行组合的mop试验的集合扰动能明显更好地估计中α与中β尺度预报不确定性(更接近1)。由图5c和5d可以看到,对于同时包含初值与模式物理扰动的情况,同时考虑在中α与中β尺度的预报不确定性估计,将本发明所涉及的所有类型的初值与模式物理扰动进行组合的icp+mop 试验具有最好的效果(最接近1)。
[0162]
图6计算了1小时累积降水的crps评分,该评分越小说明相应的概率预报效果越好。由图6a可以看到,相比单一类型初值扰动,将不同类型初值扰动进行组合的 icp试验的概率预报效果更好(crps更小)。由图6b可以看到,相比单一类型模式物理扰动,将不同类型模式物理扰动进行组合的mop试验的概率预报效果更好 (crps更小)。由图6c和6d可以看到,将本发明所涉及的所有类型的初值与模式物理扰动进行组合的icp+mop试验具有最好的效果(crps最小)。
[0163]
以上均为本技术的较佳实施例,并非依此限制本技术的保护范围,故:凡依本技术的结构、形状、原理所做的等效变化,均应涵盖于本技术的保护范围之内。
技术特征:1.一种基于多源多类型扰动组合的对流尺度集合预报方法,其特征在于,包括以下步骤:步骤一、基于中尺度grapes模式,建立包含初值、侧边界与模式物理扰动的中尺度集合预报逻辑,并以模式积分生成气象要素预报,为下一个对流尺度集合预报的初值与侧边界分析提供降尺度扰动数据;步骤二、基于对流尺度grapes模式,建立包含初值、侧边界与模式物理扰动的对流尺度集合预报逻辑,并以模式积分生成气象要素预报场。2.根据权利要求1所述的基于多源多类型扰动组合的对流尺度集合预报方法,其特征在于,所述中尺度集合预报逻辑,其包括:控制成员分析与预报;以及,扰动成员分析与预报;所述控制成员分析与预报、扰动成员分析与预报分别包括:循环更新资料同化分析和中尺度数值模式预报,生成分析场与预报场;其中,分析场由6小时的循环同化获得,而预报场由24小时的模式积分获得。3.根据权利要求2所述的基于多源多类型扰动组合的对流尺度集合预报方法,其特征在于,所述循环更新资料同化分析采用三维变分分析方法,并采用多网格技术与部分循环分析同化策略。4.根据权利要求3所述的基于多源多类型扰动组合的对流尺度集合预报方法,其特征在于,所述三维变分分析方法通过grapes 3d-var模块执行,且以流函数、势函数、非平衡exner气压与假相对湿度作为控制变量;过程中的背景误差协方差由新息向量方法估计得到,并经过调试以适应中尺度同化分析;其中,所同化的观测资料主要包括探空、地面、船舶、风廓线雷达与飞机报文;所述三维变分分析方法求解的惩罚函数为:其中,x
a
和x
b
分别表示分析场与背景场,y
o
表示观测场,而h表示观测算子;b和r分别表示背景误差协方差与观测误差协方差。5.根据权利要求3所述的基于多源多类型扰动组合的对流尺度集合预报方法,其特征在于,所述多网格技术包括:将背景场从原来模式格点投影到原格点数一半的粗网格格点上,采用粗网格背景误差协方差设置进行三维变分分析,获得粗网格分析场;将粗网格分析场插值到原来模式格点作为新的细网格背景场,采用细网格背景误差协方差设置进行三维变分分析,获得细网格分析场,并作为最终分析场。6.根据权利要求3所述的基于多源多类型扰动组合的对流尺度集合预报方法,其特征在于,所述部分循环分析包括:在分析时刻前6小时,以水平分辨率为0.5
°
*0.5
°
的全球数值模式ncepglobal forecast system的6小时预报场作为背景场;其中,全球数值模式ncepglobal forecast system称为gfs;经过多网格三维变分分析方法同化分析,获得该时刻分析场,并以gfs预报场作为中尺
度数值模式的侧边界进行3小时预报;以3小时预报场作为背景场,间隔3小时进行多网格三维变分分析;经过两轮循环同化,获得分析时刻分析场;以分析时刻分析场作为初始场,以gfs的12-36小时预报场作为侧边界,采用中尺度数值模式进行24小时预报,获得中尺度集合预报控制预报场。7.根据权利要求2所述的基于多源多类型扰动组合的对流尺度集合预报方法,其特征在于,所述扰动成员分析与预报,其包括:1)、在分析时刻前6小时,采用三维变分分析的背景误差协方差矩阵,生成随机平衡扰动;将随机平衡扰动叠加到gfs的6-12小时预报场,获得扰动成员进行循环同化所需的冷启动背景场与侧边界条件;进行间隔3小时的循环同化,并获得分析时刻的扰动初始场;2)、将随机平衡扰动叠加到gfs的12-36小时预报场,获得扰动成员进行模式积分所需的扰动侧边界条件;基于分析时刻扰动初始场,以及gfs提供的扰动侧边界条件,进行24小时的模式积分获得扰动成员预报场;3)、针对微物理与边界层过程分别挑选不同的参数化方案,并进行不同组合;假定扰动成员为16个,则针对16个扰动成员,分别选择不同的参数化方案组合,且成员1-4为wsm6与mrf组合;成员5-8为wsm6与ysu组合;成员9-12为wsm5)与mrf组合;成员13-16为wsm5与ysu组合;采用sppt)方案,在模式物理过程总倾向上叠加标准差为0.5,空间相关尺度为100公里,时间相关尺度为6小时的随机扰动。8.根据权利要求1所述的基于多源多类型扰动组合的对流尺度集合预报方法,其特征在于,所述对流尺度集合预报逻辑,其包括:控制成员分析与预报;初值扰动生成;侧边界扰动生成;模式物理扰动生成;以及,模式积分预报,采用包含多源多类型扰动组合的初值、侧边界与模式进行24小时积分,获得对流尺度集合预报系统的扰动成员预报场;其中,所述控制成员分析与预报包括:循环更新资料同化分析和对流尺度数值模式预报,生成分析场与预报场;分析场由6小时的循环同化获得,而预报场由24小时的模式积分获得;且,与中尺度集合预报逻辑中的三维变分分析方法不同的是:在三维变分分析中所用的背景误差协方差经过调试以适应对流尺度同化分析;以分析时刻分析场作为初始场,以中尺度数值模式24小时预报场作为侧边界,采用对流尺度数值模式进行24小时预报,获得对流尺度集合预报控制成员预报场。9.根据权利要求8所述的基于多源多类型扰动组合的对流尺度集合预报方法,其特征在于,所述扰动成员的生成,其满足公式:
其中,e
f
(t)表示t时刻扰动成员预报场,e
d
(0)表示分析时刻控制成员初始场,a
d
和p
d
分别表示控制预报的模式动力与物理倾向,b
d
表示控制预报的侧边界条件,de表示初值扰动,dp表示模式物理扰动,db表示侧边界扰动,而和分别表示从初始时刻到t时刻的时间积分与侧边界强迫。10.根据权利要求9所述的基于多源多类型扰动组合的对流尺度集合预报方法,所述初值扰动生成满足公式:de=α1idscp+α2edap+α3tlap+top+tsp;其中,idscp,edap,tlap,top和tsp分别表示降尺度扰动、资料同化集合扰动、时间滞后扰动、地形扰动与海表温度扰动,而α1,α2和α3分别表示idscp,edap和tlap的权重系数。11.根据权利要求9所述的基于多源多类型扰动组合的对流尺度集合预报方法,所述侧边界扰动生成包括:1)、基于中尺度集合预报逻辑的降尺度扰动;2)、振幅随模式积分增大的随机平衡扰动。12.根据权利要求9所述的基于多源多类型扰动组合的对流尺度集合预报方法,所述模式物理扰动生成包括:1)、与中尺度集合预报逻辑相同的多物理参数化方案;2)、针对微物理参数化方案的雨截断参数与边界层参数化方案的临界理查森数分别进行不同的量值设置;3)、与中尺度集合预报逻辑相同的sppt方案,且,不同的是:当前采用空间相关尺度为50公里,时间相关尺度为1小时的随机扰动。13.一种多源多类型扰动组合的对流尺度集合预报系统,其特征在于,包括:中尺度集合预报系统,其基于中尺度grapes模式建立,包含初值、侧边界与模式物理扰动,且包括:控制成员分析与预报模块;以及,扰动成员分析与预报模块;其用于通过模式积分生成气象要素预报,为对流尺度集合预报的初值与侧边界提供降尺度扰动;对流尺度集合预报系统,其基于对流尺度grapes模式建立,包含初值、侧边界与模式物理扰动,且包括:控制成员分析与预报模块、初值扰动模块、侧边界扰动模块、模式物理扰动模块以及模式积分模块,且用于通过模式积分生成气象要素预报场。
技术总结本发明公开了一种基于多源多类型扰动组合的对流尺度集合预报方法及系统,其方法包括:步骤一、基于中尺度GRAPES模式,建立包含初值、侧边界与模式物理扰动的中尺度集合预报逻辑,并以模式积分生成气象要素预报,为下一个对流尺度集合预报的初值与侧边界分析提供降尺度扰动数据;步骤二、基于对流尺度GRAPES模式,建立包含初值、侧边界与模式物理扰动的对流尺度集合预报逻辑,并以模式积分生成气象要素预报场。本申请可以弥补单一源及单一类型扰动方法的不足,满足对流尺度集合预报需求。满足对流尺度集合预报需求。满足对流尺度集合预报需求。
技术研发人员:张旭斌
受保护的技术使用者:中国气象局广州热带海洋气象研究所(广东省气象科学研究所)
技术研发日:2022.06.22
技术公布日:2022/11/1