一种重建颈动脉三维图像的方法、装置及存储介质与流程

专利2023-06-15  105



1.本技术涉及图像处理技术领域,具体涉及一种重建颈动脉三维图像的方法、装置及存储介质。


背景技术:

2.颈动脉斑块是颈动脉硬化的粥样斑块,是全身性动脉硬化的一种表现。在颈动脉这个部位,更加容易形成斑块,因为颈动脉受血流的冲击力较大,尤其在颈内和颈外动脉分叉的位置上,受血流冲击力更大,造成长期高速血流,引起动脉内膜的慢性损伤,引起钙质、脂质、胆固醇增生、沉积,中膜的平滑肌组织和胶原组织的沉积和增生,引起硬化斑块形成。如果形成斑块较大,管腔狭窄严重时,可造成脑供血不足,引起相应的脑缺血症状,严重时可引起脑卒中,即脑梗,导致偏瘫、失语、视物模糊或者黑蒙。此外,不稳定斑块在血流冲击下,可造成远端的血管栓塞,导致脑供血不足及脑梗死。
3.磁共振血管造影(mra)是一种广泛用于颈动脉疾病的诊断和管理的影像学方法。mra提供的高分辨率图像可以帮助临床医生甚至在早期阶段检测动脉粥样硬化斑块,评估其稳定性并支持临床决策。在此背景下,大量研究表明,通过血流施加于血管中的生物力学力与动脉粥样硬化斑块组织的发展和进展之间存在联系。mra图像可用于患者特定的血管管腔和外壁的三维重建,并在应用计算流体动力学(cfd)模拟后,计算出的生物力学力可能与斑块组织特征和脑血管事件如中风相关。因此,新的成像方法和技术可以增强血管系统的可视化,更好的对管腔、管壁和斑块组织的图像进行分割,可以更好的对颈动脉斑块的诊断、分析斑块的性质和治疗颈动脉粥样硬化疾病提供更准确的三维血管模型和有价值的信息。
4.但是,目前利用mra检测和评估动脉粥样硬化斑块及其稳定性效果欠佳,况且需要临床医生大量的时间和精力去完成这个任务,现有技术中的颈动脉三维重建的半自动和全自动的重建方法尚不完善,仍然需要专家临床医生进行适当的注释来评估分割算法获得的结果,而且既往的研究提出的重建分割算法尚无大量的数据进行充分的验证,欠缺较好的准确性。


技术实现要素:

5.本技术实施例的目的在于提供一种重建颈动脉三维图像的方法、装置及存储介质,用以解决现有技术中的颈动脉三维重建的半自动和全自动的重建方法尚不完善,欠缺较好的准确性的问题。
6.为实现上述目的,本技术实施例提供一种重建颈动脉三维图像的方法,包括步骤:s1、对获取的待处理目标影像进行预处理,通过预先构建的分割模型对预处理后的所述待处理目标影像进行分割,得到目标图像;
7.s2、根据所述目标图像,创建像素体积,基于所述像素体积,创建3d水平集图像;
8.s3、初始化所述3d水平集图像,得到颈动脉树,对所述颈动脉树进行标注,得到标
注图像;
9.s4、将所述标注图像反向投影到所述3d水平集图像的初始帧上,判断所述3d水平集图像是否满足解剖特征标准,若否,则基于获取的3d水平集屏蔽帧重复步骤s1至s4,直至获得满足所述解剖特征标准的所述3d水平集图像。
10.可选地,所述预处理包括:
11.在所述待处理目标影像上选择一个静态窗口,将所述静态窗口设置为裁剪区域,使所述颈动脉包含在所述裁剪区域内;
12.采用自适应直方图均衡滤波器处理所述裁剪区域,得到预处理后的所述待处理目标影像。
13.可选地,通过预先构建的所述分割模型对预处理后的所述待处理目标影像进行分割,得到所述目标图像的方法包括:
14.基于预处理后得到的所述待处理目标影像的tof图像序列和t1w图像序列,通过为每个t1w图像分配最近的tof帧来注册所述tof图像序列和t1w图像序列,并作为所述分割模型的输入;
15.获取所述分割模型输出的100*100像素的所述目标图像。
16.可选地,判断所述3d水平集图像是否满足所述解剖特征标准的方法包括:
17.应用连通分量计算算法,在所述初始帧以及之后的每一帧上检测所有剩余轮廓,根据特定区域的解剖特征,判断是否满足所述解剖特征标注,所述解剖特征标准包括:在分叉之前有一个血管,分叉之后有两个血管,分叉上方10mm有三个或四个血管分叉。
18.可选地,获取待处理目标影像的方法包括:
19.采用双侧四通道相控阵颈动脉线圈进行mri检查;
20.根据所述mri检查,采集以dicom格式存储的数据,得到所述待处理目标影像。
21.可选地,构建所述分割模型的方法包括:
22.获取ud-net模型,所述ud-net模型的卷积层为滤波器尺寸为3*3*3的三维卷积层;
23.获取训练图像,所述训练图像包括标注后的颈动脉的tof框架上的管腔壁图像和t1w框架上的颈动脉的动脉壁图像;
24.将所述训练图像作为输入对所述ud-net模型进行训练,得到所述分割模型。
25.为实现上述目的,本技术还提供一种重建颈动脉三维图像的装置,包括:存储器;以及
26.与所述存储器连接的处理器,所述处理器被配置成:
27.s1、对获取的待处理目标影像进行预处理,通过预先构建的分割模型对预处理后的所述待处理目标影像进行分割,得到目标图像;
28.s2、根据所述目标图像,创建像素体积,基于所述像素体积,创建3d水平集图像;
29.s3、初始化所述3d水平集图像,得到颈动脉树,对所述颈动脉树进行标注,得到标注图像;
30.s4、将所述标注图像反向投影到所述3d水平集图像的初始帧上,判断所述3d水平集图像是否满足解剖特征标准,若否,则基于获取的3d水平集屏蔽帧重复步骤s1至s4,直至获得满足所述解剖特征标准的所述3d水平集图像。
31.可选地,所述处理器还被配置成:
32.在所述待处理目标影像上选择一个静态窗口,将所述静态窗口设置为裁剪区域,使所述颈动脉包含在所述裁剪区域内;
33.采用自适应直方图均衡滤波器处理所述裁剪区域,得到预处理后的所述待处理目标影像。
34.可选地,所述处理器还被配置成:
35.基于预处理后得到的所述待处理目标影像的tof图像序列和t1w图像序列,通过为每个t1w图像分配最近的tof帧来注册所述tof图像序列和t1w图像序列,并作为所述分割模型的输入;
36.获取所述分割模型输出的100*100像素的所述目标图像。
37.为实现上述目的,本技术还提供一种计算机存储介质,其上存储有计算机程序,其中所述计算机程序被机器执行时实现如上所述的方法的步骤。
38.本技术实施例具有如下优点:
39.1.本技术实施例提供一种重建颈动脉三维图像的方法,包括步骤:s1、对获取的待处理目标影像进行预处理,通过预先构建的分割模型对预处理后的所述待处理目标影像进行分割,得到目标图像;s2、根据所述目标图像,创建像素体积,基于所述像素体积,创建3d水平集图像;s3、初始化所述3d水平集图像,得到颈动脉树,对所述颈动脉树进行标注,得到标注图像;s4、将所述标注图像反向投影到所述3d水平集图像的初始帧上,判断所述3d水平集图像是否满足解剖特征标准,若否,则基于获取的3d水平集屏蔽帧重复步骤s1至s4,直至获得满足所述解剖特征标准的所述3d水平集图像。
40.通过上述方法,基于mri多光谱序列的颈动脉分割,使用图像处理方法、机器学习方法和混合模型来分割血管的内腔和外壁,利用基于纹理的图像处理算法和混合迭代框架中的ud-net深度学习模型,能够准确、自动地提供颈动脉分叉和较小分支的三维模型,且经过大量的数据训练和验证,能够取得满意的分割结果。
附图说明
41.为了更清楚地说明本技术的实施方式或现有技术中的技术方案,下面将对实施方式或现有技术描述中所需要使用的附图作简单地介绍。显而易见地,下面描述中的附图仅仅是示例性的,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图引伸获得其它的实施附图。
42.图1为本技术实施例提供的一种重建颈动脉三维图像的方法的流程图;
43.图2为本技术实施例提供的一种重建颈动脉三维图像的方法的ud-net模型示意图;
44.图3为本技术实施例提供的一种重建颈动脉三维图像的方法的分割模型的分割效果示意图;
45.图4为本技术实施例提供的一种重建颈动脉三维图像的方法的3d水平集图像示意图;
46.图5为本技术实施例提供的一种重建颈动脉三维图像的装置的模块框图。
具体实施方式
47.以下由特定的具体实施例说明本技术的实施方式,熟悉此技术的人士可由本说明书所揭露的内容轻易地了解本技术的其他优点及功效,显然,所描述的实施例是本技术一部分实施例,而不是全部的实施例。基于本技术中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本技术保护的范围。
48.此外,下面所描述的本技术不同实施方式中所涉及的技术特征只要彼此之间未构成冲突就可以相互结合。
49.本技术一实施例提供一种重建颈动脉三维图像的方法,参考图1,图1为本技术的一实施方式中提供的一种重建颈动脉三维图像的方法的流程图,应当理解的是,该方法还可以包括未示出的附加框和/或可以省略所示出的框,本技术的范围在此方面不受限制。
50.执行步骤s1,对获取的待处理目标影像进行预处理,通过预先构建的分割模型对预处理后的所述待处理目标影像进行分割,得到目标图像。
51.在一些实施例中,获取待处理目标影像的方法包括:采用双侧四通道相控阵颈动脉线圈进行mri检查;根据所述mri检查,采集以dicom格式存储的数据,得到所述待处理目标影像。
52.具体地,采用双侧四通道相控阵颈动脉线圈进行mri检查(1.5t或3.0t)。mri序列的采集参数如下:(i)tof图像:重复时间:23ms,有效回波时间:3.2ms,视场[fov]:160mm,切片厚度:1mm;(ii)快速自旋回波双反转恢复制备序列(t1w):申请时间:1428.57ms,有效回声时间:7.672ms,fov:100mm,截面厚度:3mm,采集数据以dicom格式存储。
[0053]
在一些实施例中,所述预处理包括:在所述待处理目标影像上选择一个静态窗口,将所述静态窗口设置为裁剪区域,使所述颈动脉包含在所述裁剪区域内;采用自适应直方图均衡滤波器处理所述裁剪区域,得到预处理后的所述待处理目标影像。
[0054]
具体地,预处理的第一步是通过选择一个静态的100x100像素的窗口(对于左动脉模型或对于右动脉模型)自动分割包含正在重建的颈动脉的图像区域来实现的,设定窗口的坐标的前提是保证整个动脉包含在裁剪区域。在裁剪区域上,采用自适应直方图均衡滤波器,旨在将输入序列放置到到接下来的步骤中。
[0055]
在一些实施例中,通过预先构建的所述分割模型对预处理后的所述待处理目标影像进行分割,得到所述目标图像的方法包括:基于预处理后得到的所述待处理目标影像的tof图像序列和t1w图像序列,通过为每个t1w图像分配最近的tof帧来注册所述tof图像序列和t1w图像序列,并作为所述分割模型的输入;获取所述分割模型输出的100*100像素的所述目标图像。
[0056]
具体地,基于dicom格式的磁共振(mri)的tof和t1加权(t1w)图像序列,通过为每个t1w分配“最近”的tof帧来注册这两个序列(tof和t1w)。
[0057]
在一些实施例中,构建所述分割模型的方法包括:获取ud-net模型,所述ud-net模型的卷积层为滤波器尺寸为3*3*3的三维卷积层;获取训练图像,所述训练图像包括标注后的颈动脉的tof框架上的管腔壁图像和t1w框架上的颈动脉的动脉壁图像;将所述训练图像作为输入对所述ud-net模型进行训练,得到所述分割模型。
[0058]
具体地,所述分割模型,用于从每个mri序列中分离感兴趣的像素(tof序列的管腔和t1w序列的外动脉壁),参考图2,ud-net是一种具有卷积层的编码器-解码器网络,其特征
是编码器和解码器层之间的跳跃连接传递。本技术将ud-net模型中的所有二维卷积层均替换为滤波器尺寸为3
×3×
3的三维卷积层,网络有五级结构,包括四个下采样和上采样步骤:572
×
570
×
568

284
×
282
×
280

140
×
138
×
136

68
×
66
×
64

32
×
30
×
28

56
×
54
×
52

104
×
102
×
100

200
×
198
×
196

392
×
390
×
388
×
386。每个灰色方框对应一个多通道特征图。通道数表示在方框的顶部,因为该方法在医学图像分割任务中显示了显著的结果。对颈动脉的tof框架上的管腔壁和t1w框架上的颈动脉的动脉壁进行了标注。标注后运用作ud-net模型的建立(一个模型用于分割管腔,另一个模型用于分割外动脉壁)训练阶段的输入,这个数据的训练过程产生了两个数据集,一个是100(tof帧)x100 x 100像素的管腔壁数据集,另一个是10(t1w帧)x100 x 100像素的颈动脉的血管壁成形图像。这个深度神经网络是用pytork函数api实现的。网络输出的是一个100x 100像素的图像,为了保证激活函数被利用,选择了二元交叉熵损失函数,分割效果参考图3所示,图3为(a)tof图像和(b)血管成形图像用于ud-net训练的相应遮罩图像。
[0059]
执行步骤s2,根据所述目标图像,创建像素体积,基于所述像素体积,创建3d水平集图像。
[0060]
执行步骤s3,初始化所述3d水平集图像,得到颈动脉树,对所述颈动脉树进行标注,得到标注图像。
[0061]
具体地,通过将得到的目标图像进行叠加,并创建一个像素体积(一个用于tof,一个用于t1w)。在创建的体积上,应用3d水平集,该水平集是曲率形态学算子的核心,所使用的形态学算子如公式(1)。
[0062]
e(s)=∫∫g(i)(s(a))da
ꢀꢀ
(1)
[0063]
da是面积的欧几里德元素,将感兴趣的区域被单独标注出来,3d水平集图像模型初始化为体积周围的圆柱体,并在颈动脉树上逐渐标注,此过程将生成分割像素的标注图像。
[0064]
执行步骤s4,将所述标注图像反向投影到所述3d水平集图像的初始帧上,判断所述3d水平集图像是否满足解剖特征标准,若否,则基于获取的3d水平集屏蔽帧重复步骤s1至s4,直至获得满足所述解剖特征标准的所述3d水平集图像。
[0065]
在一些实施例中,判断所述3d水平集图像是否满足所述解剖特征标准的方法包括:应用连通分量计算算法,在所述初始帧以及之后的每一帧上检测所有剩余轮廓,根据特定区域的解剖特征,判断是否满足所述解剖特征标注,所述解剖特征标准包括:在分叉之前有一个血管,分叉之后有两个血管,分叉上方10mm有三个或四个血管分叉。
[0066]
具体地,上述步骤完成后将所有标注图像反向投影到初始帧上。然后,应用连通分量计算算法,在每一帧上检测所有剩余轮廓,根据特定区域的解剖特征,可以预期在分叉之前会有一个血管,分叉之后会有两个血管,分叉上方10mm会有三到四个血管分叉。如果出现不满足这些标准时,基于最新接收到的水平集屏蔽帧重复上述实施例中的算法,并再次向模型提供血管的形态学信息,优化更好的分割和重建颈动脉形态,直至经过十次迭代的模型重建,这个分析和研究过程一直持续到一个解剖学上有效的模型产生,参考图4。
[0067]
通过上述方法,基于mri多光谱序列的颈动脉分割,使用图像处理方法、机器学习方法和混合模型来分割血管的内腔和外壁,利用基于纹理的图像处理算法和混合迭代框架中的ud-net深度学习模型,能够准确、自动地提供颈动脉分叉和较小分支的三维模型,且经
过大量的数据训练和验证,能够取得满意的分割结果。
[0068]
图5为本技术实施例提供的一种重建颈动脉三维图像的装置的模块框图。该装置包括:
[0069]
存储器201;以及与所述存储器201连接的处理器202,所述处理器202被配置成:s1、对获取的待处理目标影像进行预处理,通过预先构建的分割模型对预处理后的所述待处理目标影像进行分割,得到目标图像;
[0070]
s2、根据所述目标图像,创建像素体积,基于所述像素体积,创建3d水平集图像;
[0071]
s3、初始化所述3d水平集图像,得到颈动脉树,对所述颈动脉树进行标注,得到标注图像;
[0072]
s4、将所述标注图像反向投影到所述3d水平集图像的初始帧上,判断所述3d水平集图像是否满足解剖特征标准,若否,则基于获取的3d水平集屏蔽帧重复步骤s1至s4,直至获得满足所述解剖特征标准的所述3d水平集图像。
[0073]
在一些实施例中,所述处理器202还被配置成:在所述待处理目标影像上选择一个静态窗口,将所述静态窗口设置为裁剪区域,使所述颈动脉包含在所述裁剪区域内;
[0074]
采用自适应直方图均衡滤波器处理所述裁剪区域,得到预处理后的所述待处理目标影像。
[0075]
在一些实施例中,所述处理器202还被配置成:基于预处理后得到的所述待处理目标影像的tof图像序列和t1w图像序列,通过为每个t1w图像分配最近的tof帧来注册所述tof图像序列和t1w图像序列,并作为所述分割模型的输入;
[0076]
获取所述分割模型输出的100*100像素的所述目标图像。
[0077]
在一些实施例中,所述处理器202还被配置成:应用连通分量计算算法,在所述初始帧以及之后的每一帧上检测所有剩余轮廓,根据特定区域的解剖特征,判断是否满足所述解剖特征标注,所述解剖特征标准包括:在分叉之前有一个血管,分叉之后有两个血管,分叉上方10mm有三个或四个血管分叉。
[0078]
在一些实施例中,所述处理器202还被配置成:采用双侧四通道相控阵颈动脉线圈进行mri检查;
[0079]
根据所述mri检查,采集以dicom格式存储的数据,得到所述待处理目标影像。
[0080]
在一些实施例中,所述处理器202还被配置成:获取ud-net模型,所述ud-net模型的卷积层为滤波器尺寸为3*3*3的三维卷积层;
[0081]
获取训练图像,所述训练图像包括标注后的颈动脉的tof框架上的管腔壁图像和t1w框架上的颈动脉的动脉壁图像;
[0082]
将所述训练图像作为输入对所述ud-net模型进行训练,得到所述分割模型。
[0083]
具体实现方法参考前述方法实施例,此处不再赘述。
[0084]
本技术可以是方法、装置、系统和/或计算机程序产品。计算机程序产品可以包括计算机可读存储介质,其上载有用于执行本技术的各个方面的计算机可读程序指令。
[0085]
计算机可读存储介质可以是可以保持和存储由指令执行设备使用的指令的有形设备。计算机可读存储介质例如可以是――但不限于――电存储设备、磁存储设备、光存储设备、电磁存储设备、半导体存储设备或者上述的任意合适的组合。计算机可读存储介质的更具体的例子(非穷举的列表)包括:便携式计算机盘、硬盘、随机存取存储器(ram)、只读存
储器(rom)、可擦式可编程只读存储器(eprom或闪存)、静态随机存取存储器(sram)、便携式压缩盘只读存储器(cd-rom)、数字多功能盘(dvd)、记忆棒、软盘、机械编码设备、例如其上存储有指令的打孔卡或凹槽内凸起结构、以及上述的任意合适的组合。这里所使用的计算机可读存储介质不被解释为瞬时信号本身,诸如无线电波或者其他自由传播的电磁波、通过波导或其他传输媒介传播的电磁波(例如,通过光纤电缆的光脉冲)、或者通过电线传输的电信号。
[0086]
这里所描述的计算机可读程序指令可以从计算机可读存储介质下载到各个计算/处理设备,或者通过网络、例如因特网、局域网、广域网和/或无线网下载到外部计算机或外部存储设备。网络可以包括铜传输电缆、光纤传输、无线传输、路由器、防火墙、交换机、网关计算机和/或边缘服务器。每个计算/处理设备中的网络适配卡或者网络接口从网络接收计算机可读程序指令,并转发该计算机可读程序指令,以供存储在各个计算/处理设备中的计算机可读存储介质中。
[0087]
用于执行本技术操作的计算机程序指令可以是汇编指令、指令集架构(isa)指令、机器指令、机器相关指令、微代码、固件指令、状态设置数据、或者以一种或多种编程语言的任意组合编写的源代码或目标代码,所述编程语言包括面向对象的编程语言—诸如smalltalk、c++等,以及常规的过程式编程语言—诸如“c”语言或类似的编程语言。计算机可读程序指令可以完全地在用户计算机上执行、部分地在用户计算机上执行、作为一个独立的软件包执行、部分在用户计算机上部分在远程计算机上执行、或者完全在远程计算机或服务器上执行。在涉及远程计算机的情形中,远程计算机可以通过任意种类的网络—包括局域网(lan)或广域网(wan)—连接到用户计算机,或者,可以连接到外部计算机(例如利用因特网服务提供商来通过因特网连接)。在一些实施例中,通过利用计算机可读程序指令的状态信息来个性化定制电子电路,例如可编程逻辑电路、现场可编程门阵列(fpga)或可编程逻辑阵列(pla),该电子电路可以执行计算机可读程序指令,从而实现本技术的各个方面。
[0088]
这里参照根据本技术实施例的方法、装置(系统)和计算机程序产品的流程图和/或框图描述了本技术的各个方面。应当理解,流程图和/或框图的每个方框以及流程图和/或框图中各方框的组合,都可以由计算机可读程序指令实现。
[0089]
这些计算机可读程序指令可以提供给通用计算机、专用计算机或其他可编程数据处理装置的处理单元,从而生产出一种机器,使得这些指令在通过计算机或其他可编程数据处理装置的处理单元执行时,产生了实现流程图和/或框图中的一个或多个方框中规定的功能/动作的装置。也可以把这些计算机可读程序指令存储在计算机可读存储介质中,这些指令使得计算机、可编程数据处理装置和/或其他设备以特定方式工作,从而,存储有指令的计算机可读介质则包括一个制造品,其包括实现流程图和/或框图中的一个或多个方框中规定的功能/动作的各个方面的指令。
[0090]
也可以把计算机可读程序指令加载到计算机、其他可编程数据处理装置、或其他设备上,使得在计算机、其他可编程数据处理装置或其他设备上执行一系列操作步骤,以产生计算机实现的过程,从而使得在计算机、其他可编程数据处理装置、或其他设备上执行的指令实现流程图和/或框图中的一个或多个方框中规定的功能/动作。
[0091]
附图中的流程图和框图显示了根据本技术的多个实施例的系统、方法和计算机程
序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段或指令的一部分,所述模块、程序段或指令的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。在有些作为替换的实现中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个连续的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这依所涉及的功能而定。也要注意的是,框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组合,可以用执行规定的功能或动作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实现。
[0092]
注意,除非另有直接说明,否则本说明书(包含任何所附权利要求、摘要和附图)中所揭示的所有特征皆可由用于达到相同、等效或类似目的的可替代特征来替换。因此,除非另有明确说明,否则所公开的每一个特征仅是一组等效或类似特征的一个示例。在使用到的情况下,进一步地、较优地、更进一步地和更优地是在前述实施例基础上进行另一实施例阐述的简单起头,该进一步地、较优地、更进一步地或更优地后带的内容与前述实施例的结合作为另一实施例的完整构成。在同一实施例后带的若干个进一步地、较优地、更进一步地或更优地设置之间可任意组合的组成又一实施例。
[0093]
虽然,上文中已经用一般性说明及具体实施例对本技术作了详尽的描述,但在本技术基础上,可以对之作一些修改或改进,这对本领域技术人员而言是显而易见的。因此,在不偏离本技术精神的基础上所做的这些修改或改进,均属于本技术要求保护的范围。

技术特征:
1.一种重建颈动脉三维图像的方法,其特征在于,包括以下步骤:s1、对获取的待处理目标影像进行预处理,通过预先构建的分割模型对预处理后的所述待处理目标影像进行分割,得到目标图像;s2、根据所述目标图像,创建像素体积,基于所述像素体积,创建3d水平集图像;s3、初始化所述3d水平集图像,得到颈动脉树,对所述颈动脉树进行标注,得到标注图像;s4、将所述标注图像反向投影到所述3d水平集图像的初始帧上,判断所述3d水平集图像是否满足解剖特征标准,若否,则基于获取的3d水平集屏蔽帧重复步骤s1至s4,直至获得满足所述解剖特征标准的所述3d水平集图像。2.根据权利要求1所述的重建颈动脉三维图像的方法,其特征在于,所述预处理包括:在所述待处理目标影像上选择一个静态窗口,将所述静态窗口设置为裁剪区域,使所述颈动脉包含在所述裁剪区域内;采用自适应直方图均衡滤波器处理所述裁剪区域,得到预处理后的所述待处理目标影像。3.根据权利要求1所述的重建颈动脉三维图像的方法,其特征在于,通过预先构建的所述分割模型对预处理后的所述待处理目标影像进行分割,得到所述目标图像的方法包括:基于预处理后得到的所述待处理目标影像的tof图像序列和t1w图像序列,通过为每个t1w图像分配最近的tof帧来注册所述tof图像序列和t1w图像序列,并作为所述分割模型的输入;获取所述分割模型输出的100*100像素的所述目标图像。4.根据权利要求1所述的重建颈动脉三维图像的方法,其特征在于,判断所述3d水平集图像是否满足所述解剖特征标准的方法包括:应用连通分量计算算法,在所述初始帧以及之后的每一帧上检测所有剩余轮廓,根据特定区域的解剖特征,判断是否满足所述解剖特征标注,所述解剖特征标准包括:在分叉之前有一个血管,分叉之后有两个血管,分叉上方10mm有三个或四个血管分叉。5.根据权利要求1所述的重建颈动脉三维图像的方法,其特征在于,获取待处理目标影像的方法包括:采用双侧四通道相控阵颈动脉线圈进行mri检查;根据所述mri检查,采集以dicom格式存储的数据,得到所述待处理目标影像。6.根据权利要求1所述的重建颈动脉三维图像的方法,其特征在于,构建所述分割模型的方法包括:获取ud-net模型,所述ud-net模型的卷积层为滤波器尺寸为3*3*3的三维卷积层;获取训练图像,所述训练图像包括标注后的颈动脉的tof框架上的管腔壁图像和t1w框架上的颈动脉的动脉壁图像;将所述训练图像作为输入对所述ud-net模型进行训练,得到所述分割模型。7.一种重建颈动脉三维图像的装置,其特征在于,包括:存储器;以及与所述存储器连接的处理器,所述处理器被配置成:s1、对获取的待处理目标影像进行预处理,通过预先构建的分割模型对预处理后的所
述待处理目标影像进行分割,得到目标图像;s2、根据所述目标图像,创建像素体积,基于所述像素体积,创建3d水平集图像;s3、初始化所述3d水平集图像,得到颈动脉树,对所述颈动脉树进行标注,得到标注图像;s4、将所述标注图像反向投影到所述3d水平集图像的初始帧上,判断所述3d水平集图像是否满足解剖特征标准,若否,则基于获取的3d水平集屏蔽帧重复步骤s1至s4,直至获得满足所述解剖特征标准的所述3d水平集图像。8.根据权利要求7所述的重建颈动脉三维图像的装置,其特征在于,所述处理器还被配置成:在所述待处理目标影像上选择一个静态窗口,将所述静态窗口设置为裁剪区域,使所述颈动脉包含在所述裁剪区域内;采用自适应直方图均衡滤波器处理所述裁剪区域,得到预处理后的所述待处理目标影像。9.根据权利要求7所述的重建颈动脉三维图像的装置,其特征在于,所述处理器还被配置成:基于预处理后得到的所述待处理目标影像的tof图像序列和t1w图像序列,通过为每个t1w图像分配最近的tof帧来注册所述tof图像序列和t1w图像序列,并作为所述分割模型的输入;获取所述分割模型输出的100*100像素的所述目标图像。10.一种计算机存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被机器执行时实现如权利要求1至6中任一项所述的方法的步骤。

技术总结
本申请实施例公开了一种重建颈动脉三维图像的方法、装置及存储介质,其中重建颈动脉三维图像的方法包括步骤:S1、对获取的待处理目标影像进行预处理,通过预先构建的分割模型对预处理后的待处理目标影像进行分割,得到目标图像;S2、根据目标图像,创建像素体积,基于像素体积,创建3D水平集图像;S3、初始化3D水平集图像,得到颈动脉树,对颈动脉树进行标注,得到标注图像;S4、将标注图像反向投影到3D水平集图像的初始帧上,判断3D水平集图像是否满足解剖特征标准,若否,则基于获取的3D水平集屏蔽帧重复步骤S1至S4,直至获得满足解剖特征标准的3D水平集图像。准的3D水平集图像。准的3D水平集图像。


技术研发人员:刘伟奇 陈磊 马学升 陈金钢 徐鹏 赵友源
受保护的技术使用者:同心智医科技(北京)有限公司
技术研发日:2022.07.13
技术公布日:2022/11/1
转载请注明原文地址: https://tieba.8miu.com/read-3272.html

最新回复(0)