一种PPG与ECG自动转换智能算法、存储介质和计算机系统的制作方法

专利2024-12-20  22


一种ppg与ecg自动转换智能算法、存储介质和计算机系统
技术领域
1.本发明涉及智能医疗领域,特别涉及一种ppg与ecg自动转换智能算法、存储介质和计算机系统。


背景技术:

2.心脏是人体最重要的器官之一,它为全身血液循环提供源源不断的动力。心脏跳动的节律是由神经电信号控制的,神经电信号的激动会进一步引发心脏的机械活动。通过神经电信号及其控制的机械活动就能够实现“泵血”的功能。心电图(electrocardiogram,ecg)就是一种记录神经电信号发生时电位变化情况的技术。当心血管疾病发生时,控制心脏节律的神经电信号会有较明显的变化。因此,通过观察ecg中心脏的节律就能大致判断疾病的类型。随着心脏机械活动的执行,人体血管内的血液流动情况会发生变化。这使得通过光信号和传感器就能记录到血液流速变化。光电容积脉搏波描记图(photoplethysmopraphy,ppg)就是这种技术。ecg和ppg分别是基于心脏电生理特性和机械活动所获得的,是心脏状态的不同表现形式。因此两者之间有着紧密的联系。目前,已有研究者对两者间的转换进行了研究,但是难以忽略的是现有的转换方法存在有一些缺陷:
3.(1)这些方法都不能实现ppg与ecg的互相转换。这使用户在采集到ppg时可以进行转换,而当用户采集到ecg时需要使用其他方法来转换。方法之间的差异可能会对分析结果造成不可忽略的影响。
4.(2)现有的部分方法是通过提取信号参数来实现信号的转换,这种方式极大的限制了转换方法的使用范围。
5.(3)从信号语义的角度来看,ppg信号与ecg信号存在于不同的语义空间中。现有的方法难以从空间域的角度实现两者间关系的等效映射。


技术实现要素:

6.为了解决现有问题,本发明提供了一种ppg与ecg自动转换智能算法、存储介质和计算机系统,具体方案如下:
7.一种ppg与ecg自动转换的人工智能算法,包括以下步骤:
8.s1,从开源的生理信号库中获取同步的ppg信号和ecg信号及其他生理信号,并根据需求将不同信号数据进行重命名后单独放置于文件夹中;
9.s2,将步骤1获取的数据进行人工标注和划分,并对划分好的数据进行裁剪;
10.s3,对步骤2裁剪后的数据进行预处理;
11.s4,分别构建并训练信号类型识别模型以及信号转换模型;
12.s5,将步骤4训练完成的模型进行级联整合得到ppg与ecg自动转换的人工智能算法;
13.s6,通过交互界面获得用户输入的信号数据;
14.s7,将步骤6获取的信号数据作为步骤5中得到的ppg与ecg自动转换的人工智能算
法的输入,从而输出用户所需ppg与ecg信号转换后的结果。
15.优选的,步骤2具体包括以下步骤:
16.s2.1,将步骤1所述文件夹中的信号数据进行人工标注,共分为3类,分别是ppg、ecg以及其他生理信号;
17.s2.2,遍历步骤2.1标注好的信号,并按比例随机划分为信号类型识别数据集和信号转换数据集,所述信号类型识别数据集又进一步按比例划分为训练集一、验证集一和测试集一,所述信号转换数据集进一步按比例划分为训练集二、验证集二和测试集二;
18.s2.3,对所有信号进行长度相同的分段,并按照预设步长进行裁剪;其中信号总长度为个体采样时间*采样频率,分段长度为预设时间*采样频率,当分段到最后一段,且长度小于所述分段长度时,将最后一段舍弃。
19.优选的,步骤3中的所述预处理的步骤包括对ppg进行预处理的步骤、对ecg和其他信号进行预处理的步骤;
20.其中,对ppg进行预处理包括以下步骤:
21.sa3.1,利用两个低通滤波器将ppg信号的基线拉平和均值归零;
22.sa3.2,结合步骤1获取信号样本的采样频率对滤波后的信号进行重采样至固定频率;
23.sa3.3,使用归一化函数对ppg信号进行归一化;
24.对ecg和其他信号进行预处理包括以下步骤:
25.sb3.1,利用带通滤波和陷波滤波去除ecg和其他信号中的噪音干扰;
26.sb3.2,结合步骤1获取信号样本的采样频率对滤波后的信号进行重采样至固定频率;
27.sb3.3,使用归一化函数对ecg信号和其他信号进行归一化。
28.优选的,步骤4构建并训练信号类型识别模型的步骤包括:
29.s4.1,构建用于信号类型识别的深度神经网络,输入为ppg、ecg以及其他信号中的一个信号,输出为输入信号分别为ppg信号、ecg信号以及其他信号的概率;
30.s4.2,初始化用于信号类型识别的深度神经网络参数并定义损失函数和优化算法;
31.s4.3,训练并验证用于信号类型识别的深度神经网络。
32.优选的,步骤4.2具体包括以下步骤:
33.s4.2.1,采用均值为0、方差为1的正态分布随机初始化用于信号类型识别的深度神经网络;
34.s4.2.2,定义损失函数来衡量真实类别和预测结果之间的差异;
35.s4.2.3,定义adam优化算法为用于信号类型识别的深度神经网络的优化算法;
36.步骤4.3具体包括以下步骤:
37.s4.3.1,在训练集上通过前向传播算法来实现对信号特征的提取以预测信号的类别;
38.s4.3.2,通过损失函数计算预测结果和真实结果之间的损失值;
39.s4.3.3,结合基于链式求导法则的反向传播算法和adam优化算法来对用于信号类型识别的深度神经网络中的权重参数进行梯度更新;
40.s4.3.4,在验证集上通过前向传播算法来实现对信号特征的提取以预测信号的类别;
41.s4.3.5,通过损失函数计算预测结果和真实结果之间的损失值;
42.s4.3.6,根据验证集上的损失值保存用于信号类型识别的深度神经网络;
43.s4.3.7,重复步骤4.3.1-步骤4.3.6,直至训练集上用于信号类型识别的深度神经网络的损失值不再降低,最终保存的深度神经网络就是用于信号类型识别的深度神经网络。
44.优选的,步骤4中所述信号转换模型包括ppg转ecg模型,以及ecg转ppg模型;
45.其中,构建并训练所述ppg转ecg模型包括以下步骤:
46.s4.1’,构建用于ppg转ecg的深度神经网络,输入为ppg信号,输出为由ppg生成的ecg信号;
47.s4.2’,初始化用于ppg转ecg的深度神经网络参数并定义损失函数和优化算法;具体包括以下步骤:
48.s4.2.1’,采用均值为0、方差为1的正态分布随机初始化深度神经网络;
49.s4.2.2’,定义损失函数来衡量原始ecg和生成ecg之间的差异;
50.s4.2.3’,定义adam优化算法为用于ppg转ecg的深度神经网络的优化算法;
51.s4.3’,训练并验证用于ppg转ecg的深度神经网络;具体包括以下步骤:
52.s4.3.1’,在训练集上通过前向传播算法来实现对信号特征的提取以生成目标信号;
53.s4.3.2’,通过损失函数计算生成结果和真实结果之间的损失值;
54.s4.3.3’,结合基于链式求导法则的反向传播算法和adam优化算法来对用于ppg转ecg的深度神经网络中的权重参数进行梯度更新;
55.s4.3.4’,在验证集上通过前向传播算法来实现对信号特征的提取以生成目标信号;
56.s4.3.5’,通过损失函数计算生成结果和真实结果之间的损失值;
57.s4.3.6’,根据验证集上的损失值保存用于ppg转ecg的深度神经网络;
58.s4.3.7’,重复步骤4.3.1
’‑
步骤4.3.6’,直至训练集上用于ppg转ecg的深度神经网络的损失值不再降低,最终保存的深度神经网络就是用于ppg转ecg的深度神经网络;
59.其中,构建并训练所述ecg转ppg模型,只需将输入与输出对调位置后,再重复步骤4.1
’‑
步骤4.3’的所有过程即可得到所述ecg转ppg模型。
60.优选的,步骤7中的具体步骤包括:
61.s7.1,将步骤6获取的信号数据作为输入数据,并通过交互界面获得用户输入的信号、频率和转换结果的保存位置;
62.s7.2,将所述输入数据进行裁剪;即对所述输入数据进行长度相同的分段,并按照预设步长进行裁剪;其中信号总长度为个体采样时间*采样频率,分段长度为预设时间*采样频率,当分段到最后一段,且长度小于所述分段长度时,将最后一段舍弃;
63.s7.3,将裁剪后的数据进行预处理;
64.其中,对ppg进行预处理包括以下步骤:
65.sa7.3.1,利用两个低通滤波器将ppg信号的基线拉平和均值归零;
66.sa7.3.2,结合用户输入的采样频率对滤波后的信号进行重采样至固定频率;
67.sa7.3.3,使用归一化函数对ppg信号进行归一化;
68.对ecg和其他信号进行预处理包括以下步骤:
69.sb7.3.1,利用带通滤波和陷波滤波去除ecg和其他信号中的噪音干扰;
70.sb7.3.2,结合用户输入的采样频率对滤波后的信号进行重采样至固定频率;
71.sb7.3.3,使用归一化函数对ecg信号和其他信号进行归一化;
72.s7.4,对预处理后的信号数据输入至训练好后的所述信号类型识别模型中进行信号类型识别,若信号为ppg或ecg,则进行下一步操作,若信号不为ppg或ecg,则返回给用户一个提示;
73.s7.5,利用已训练好的信号转换模型对ppg、ecg信号进行转换;
74.s7.6,将步骤7.5转换后的结果保存至用户输入的保存位置中,并随机选取一段转换结果呈现给用户。
75.本发明还揭示了一种计算机可读存储介质,介质上存有计算机程序,计算机程序运行后,执行上述的ppg与ecg自动转换的人工智能算法。
76.本发明还揭示了一种计算机系统,包括处理器、存储介质,存储介质上存有计算机程序,处理器从存储介质上读取并运行计算机程序以执行上述的ppg与ecg自动转换的人工智能算法。
77.本发明的有益效果在于:
78.本发明从空间域的角度实现了ppg信号与ecg信号两者间关系的等效映射,实现了ppg信号与ecg信号之间的互相转换。
附图说明
79.为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
80.图1为本发明的算法流程图;
81.图2为本发明的具体实施例的流程图;
82.图3为本发明的ecg转ppg的应用图例;
83.图4为本发明的ppg转ecg的应用图例。
具体实施方式
84.为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地说明,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
85.如图1和图2,一种ppg与ecg自动转换的人工智能算法,包括以下步骤:
86.s1,从开源的生理信号库中获取同步的ppg信号和ecg信号及其他生理信号,并根据需求将不同信号数据进行重命名后单独放置于文件夹中;
87.s2,将步骤1获取的数据进行人工标注和划分,并对划分好的数据进行裁剪;
88.具体包括以下步骤:
89.s2.1,将步骤1所述文件夹中的信号数据进行人工标注,共分为3类,分别是ppg、ecg以及其他生理信号;所有的标注类别被添加文件夹的第一个字符,假设ppg信号、ecg信号以及其他信号所在文件夹第一个字符分别为0、1、2,则所有ppg信号标注0,所有ecg信号标注1,所有其他信号标注2。
90.s2.2,遍历步骤2.1标注好的信号,并按比例随机划分为信号类型识别数据集和信号转换数据集,所述信号类型识别数据集又进一步按比例,具体优选6:2:2,划分为训练集一、验证集一和测试集一,所述信号转换数据集进一步按比例,具体优选6:2:2,划分为训练集二、验证集二和测试集二;
91.s2.3,对所有信号进行长度相同的分段,并按照预设步长进行裁剪;其中信号总长度为个体采样时间*采样频率,分段长度为预设时间*采样频率,当分段到最后一段,且长度小于所述分段长度时,将最后一段舍弃。
92.假设预设时间为10s,预设步长为15s,采样频率为500hz,个体采样时间为107s,则此时信号总长度为53500,分段长度为5000,也就是按照预设步长15s裁剪,从信号总长的起点取0-10s的一段,10s-15s的一段舍弃,再取15s-25s的一段,25s-30s的一段舍弃。依次类推,也就是每15s裁剪一段,取该15s内前10s长度的信号,舍弃后5s长度的信号,一共可以裁剪出7段长度为5000的信号,最后剩余2s的信号长度不足一个分段长度,舍弃。
93.s3,对步骤2裁剪后的数据进行预处理;
94.所述预处理的步骤包括对ppg进行预处理的步骤、对ecg和其他信号进行预处理的步骤;
95.其中,对ppg进行预处理包括以下步骤:
96.sa3.1,利用两个低通滤波器将ppg信号的基线拉平和均值归零;
97.sa3.2,结合步骤1获取信号样本的采样频率对滤波后的信号进行重采样至固定频率;也就是,不论采样频率是多少,该步骤都将信号进行重采样至固定的一个频率;
98.sa3.3,使用归一化函数对ppg信号进行归一化;
99.对ecg和其他信号进行预处理包括以下步骤:
100.sb3.1,利用带通滤波和陷波滤波去除ecg和其他信号中的噪音干扰;
101.sb3.2,结合步骤1获取信号样本的采样频率对滤波后的信号进行重采样至固定频率;
102.sb3.3,使用归一化函数对ecg信号和其他信号进行归一化。
103.s4,分别构建并训练信号类型识别模型以及信号转换模型;
104.其中,构建并训练信号类型识别模型的步骤包括:
105.s4.1,构建用于信号类型识别的深度神经网络,输入为ppg、ecg以及其他信号中的一个信号,输出为输入信号分别为ppg信号、ecg信号以及其他信号的概率;
106.s4.2,初始化用于信号类型识别的深度神经网络参数并定义损失函数和优化算法;具体包括以下步骤:
107.s4.2.1,采用均值为0、方差为1的正态分布随机初始化用于信号类型识别的深度神经网络;
108.s4.2.2,定义损失函数来衡量真实类别和预测结果之间的差异;
109.s4.2.3,定义adam优化算法为用于信号类型识别的深度神经网络的优化算法;
110.s4.3,训练并验证用于信号类型识别的深度神经网络。具体包括以下步骤:
111.s4.3.1,在训练集上通过前向传播算法来实现对信号特征的提取以预测信号的类别;
112.s4.3.2,通过损失函数计算预测结果和真实结果之间的损失值;
113.s4.3.3,结合基于链式求导法则的反向传播算法和adam优化算法来对用于信号类型识别的深度神经网络中的权重参数进行梯度更新;
114.s4.3.4,在验证集上通过前向传播算法来实现对信号特征的提取以预测信号的类别;
115.s4.3.5,通过损失函数计算预测结果和真实结果之间的损失值;
116.s4.3.6,根据验证集上的损失值保存用于信号类型识别的深度神经网络;
117.s4.3.7,重复步骤4.3.1-步骤4.3.6,直至训练集上用于信号类型识别的深度神经网络的损失值不再降低,最终保存的深度神经网络就是用于信号类型识别的深度神经网络。
118.其中,构建并训练所述ppg转ecg模型包括以下步骤:
119.s4.1’,构建用于ppg转ecg的深度神经网络,输入为ppg信号,输出为由ppg生成的ecg信号;
120.s4.2’,初始化用于ppg转ecg的深度神经网络参数并定义损失函数和优化算法;具体包括以下步骤:
121.s4.2.1’,采用均值为0、方差为1的正态分布随机初始化深度神经网络;
122.s4.2.2’,定义损失函数来衡量原始ecg和生成ecg之间的差异;
123.s4.2.3’,定义adam优化算法为用于ppg转ecg的深度神经网络的优化算法;
124.s4.3’,训练并验证用于ppg转ecg的深度神经网络;具体包括以下步骤:
125.s4.3.1’,在训练集上通过前向传播算法来实现对信号特征的提取以生成目标信号;
126.s4.3.2’,通过损失函数计算生成结果和真实结果之间的损失值;
127.s4.3.3’,结合基于链式求导法则的反向传播算法和adam优化算法来对用于ppg转ecg的深度神经网络中的权重参数进行梯度更新;
128.s4.3.4’,在验证集上通过前向传播算法来实现对信号特征的提取以生成目标信号;
129.s4.3.5’,通过损失函数计算生成结果和真实结果之间的损失值;
130.s4.3.6’,根据验证集上的损失值保存用于ppg转ecg的深度神经网络;
131.s4.3.7’,重复步骤4.3.1
’‑
步骤4.3.6’,直至训练集上用于ppg转ecg的深度神经网络的损失值不再降低,最终保存的深度神经网络就是用于ppg转ecg的深度神经网络;
132.其中,构建并训练所述ecg转ppg模型,只需将输入与输出对调位置后,再重复步骤4.1
’‑
步骤4.3’的所有过程即可得到所述ecg转ppg模型。
133.s5,将步骤4训练完成的模型进行级联整合得到ppg与ecg自动转换的人工智能算法;
134.s6,通过交互界面获得用户输入的信号数据;
135.s7,将步骤6获取的信号数据作为步骤5中得到的ppg与ecg自动转换的人工智能算法的输入,从而输出用户所需ppg与ecg信号转换后的结果。具体步骤包括:
136.s7.1,将步骤6获取的信号数据作为输入数据,并通过交互界面获得用户输入的信号、频率和转换结果的保存位置;
137.s7.2,将所述输入数据进行裁剪;即对所述输入数据进行长度相同的分段,并按照预设步长进行裁剪;其中信号总长度为个体采样时间*采样频率,分段长度为预设时间*采样频率,当分段到最后一段,且长度小于所述分段长度时,将最后一段舍弃;
138.s7.3,将裁剪后的数据进行预处理;
139.其中,对ppg进行预处理包括以下步骤:
140.sa7.3.1,利用两个低通滤波器将ppg信号的基线拉平和均值归零;
141.sa7.3.2,结合用户输入的采样频率对滤波后的信号进行重采样至固定频率;
142.sa7.3.3,使用归一化函数对ppg信号进行归一化;
143.对ecg和其他信号进行预处理包括以下步骤:
144.sb7.3.1,利用带通滤波和陷波滤波去除ecg和其他信号中的噪音干扰;
145.sb7.3.2,结合用户输入的采样频率对滤波后的信号进行重采样至固定频率;
146.sb7.3.3,使用归一化函数对ecg信号和其他信号进行归一化;
147.s7.4,对预处理后的信号数据输入至训练好后的所述信号类型识别模型中进行信号类型识别,若信号为ppg或ecg,则进行下一步操作,若信号不为ppg或ecg,则返回给用户一个提示:该信号不是ppg信号或ecg信号,请重新输入;
148.s7.5,利用已训练好的信号转换模型对ppg、ecg信号进行转换;
149.s7.6,将步骤7.5转换后的结果保存至用户输入的保存位置中,并随机选取一段转换结果呈现给用户,如图3和图4。
150.本发明从空间域的角度实现了ppg信号与ecg信号两者间关系的等效映射,实现了ppg信号与ecg信号之间的互相转换。
151.本发明还揭示了一种计算机可读存储介质,介质上存有计算机程序,计算机程序运行后,执行上述的ppg与ecg自动转换的人工智能算法。
152.本发明还揭示了一种计算机系统,包括处理器、存储介质,存储介质上存有计算机程序,处理器从存储介质上读取并运行计算机程序以执行上述的ppg与ecg自动转换的人工智能算法。
153.本领域技术人员将进一步领会,结合本文中所公开的实施例来描述的各种解说性逻辑板块、模块、电路、和算法步骤可实现为电子硬件、计算机软件、或这两者的组合。为清楚地解说硬件与软件的这一可互换性,各种解说性组件、框、模块、电路、和步骤在上面是以其功能性的形式作一般化描述的。此类功能性是被实现为硬件还是软件取决于具体应用和施加于整体系统的设计约束。技术人员对于每种特定应用可用不同的方式来实现所描述的功能性,但这样的实现决策不应被解读成导致脱离了本发明的范围。
154.结合本文所公开的实施例描述的各种解说性逻辑板块、模块、和电路可用通用处理器、数字信号处理器(dsp)、专用集成电路(asic)、现场可编程门阵列(fpga)或其它可编程逻辑器件、分立的门或晶体管逻辑、分立的硬件组件、或其设计成执行本文所描述功能的
任何组合来实现或执行。通用处理器可以是微处理器,但在替换方案中,该处理器可以是任何常规的处理器、控制器、微控制器、或状态机。处理器还可以被实现为计算设备的组合,例如dsp与微处理器的组合、多个微处理器、与dsp核心协作的一个或多个微处理器、或任何其他此类配置。
155.结合本文中公开的实施例描述的方法或算法的步骤可直接在硬件中、在由处理器执行的软件模块中或在这两者的组合中体现。软件模块可驻留在ram存储器、闪存、rom存储器、eprom存储器、eeprom存储器、寄存器、硬盘、可移动盘、cd-rom、或本领域中所知的任何其他形式的存储介质中。示例性存储介质耦合到处理器以使得该处理器能从/向该存储介质读取和写入信息。在替换方案中,存储介质可以被整合到处理器。处理器和存储介质可驻留在asic中。asic可驻留在用户终端中。在替换方案中,处理器和存储介质可作为分立组件驻留在用户终端中。
156.在一个或多个示例性实施例中,所描述的功能可在硬件、软件、固件或其任何组合中实现。如果在软件中实现为计算机程序产品,则各功能可以作为一条或更多条指令或代码存储在计算机可读介质上或藉其进行传送。计算机可读介质包括计算机存储介质和通信介质两者,其包括促成计算机程序从一地向另一地转移的任何介质。存储介质可以是能被计算机访问的任何可用介质。作为示例而非限定,这样的计算机可读介质可包括ram、rom、eeprom、cd-rom或其它光盘存储、磁盘存储或其它磁存储设备、或能被用来携带或存储指令或数据结构形式的合意程序代码且能被计算机访问的任何其它介质。任何连接也被正当地称为计算机可读介质。例如,如果软件是使用同轴电缆、光纤电缆、双绞线、数字订户线(dsl)、或诸如红外、无线电、以及微波之类的无线技术从web网站、服务器、或其它远程源传送而来,则该同轴电缆、光纤电缆、双绞线、dsl、或诸如红外、无线电、以及微波之类的无线技术就被包括在介质的定义之中。如本文中所使用的盘(disk)和碟(disc)包括压缩碟(cd)、激光碟、光碟、数字多用碟(dvd)、软盘和蓝光碟,其中盘(disk)往往以磁的方式再现数据,而碟(disc)用激光以光学方式再现数据。上述的组合也应被包括在计算机可读介质的范围内。
157.提供对本公开的先前描述是为使得本领域任何技术人员皆能够制作或使用本公开。对本公开的各种修改对本领域技术人员来说都将是显而易见的,且本文中所定义的普适原理可被应用到其他变体而不会脱离本公开的精神或范围。由此,本公开并非旨在被限定于本文中所描述的示例和设计,而是应被授予与本文中所公开的原理和新颖性特征相一致的最广范围。
158.尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

技术特征:
1.一种ppg与ecg自动转换的人工智能算法,其特征在于,包括以下步骤:s1,从开源的生理信号库中获取同步的ppg信号和ecg信号及其他生理信号,并根据需求将不同信号数据进行重命名后单独放置于文件夹中;s2,将步骤1获取的数据进行人工标注和划分,并对划分好的数据进行裁剪;s3,对步骤2裁剪后的数据进行预处理;s4,分别构建并训练信号类型识别模型以及信号转换模型;s5,将步骤4训练完成的模型进行级联整合得到ppg与ecg自动转换的人工智能算法;s6,通过交互界面获得用户输入的信号数据;s7,将步骤6获取的信号数据作为步骤5中得到的ppg与ecg自动转换的人工智能算法的输入,从而输出用户所需ppg与ecg信号转换后的结果。2.根据权利要求1所述的ppg与ecg自动转换的人工智能算法,其特征在于,步骤2具体包括以下步骤:s2.1,将步骤1所述文件夹中的信号数据进行人工标注,共分为3类,分别是ppg、ecg以及其他生理信号;s2.2,遍历步骤2.1标注好的信号,并按比例随机划分为信号类型识别数据集和信号转换数据集,所述信号类型识别数据集又进一步按比例划分为训练集一、验证集一和测试集一,所述信号转换数据集进一步按比例划分为训练集二、验证集二和测试集二;s2.3,对所有信号进行长度相同的分段,并按照预设步长进行裁剪;其中信号总长度为个体采样时间*采样频率,分段长度为预设时间*采样频率,当分段到最后一段,且长度小于所述分段长度时,将最后一段舍弃。3.根据权利要求1所述的ppg与ecg自动转换的人工智能算法,其特征在于,步骤3中的所述预处理的步骤包括对ppg进行预处理的步骤、对ecg和其他信号进行预处理的步骤;其中,对ppg进行预处理包括以下步骤:sa3.1,利用两个低通滤波器将ppg信号的基线拉平和均值归零;sa3.2,结合步骤1获取信号样本的采样频率对滤波后的信号进行重采样至固定频率;sa3.3,使用归一化函数对ppg信号进行归一化;对ecg和其他信号进行预处理包括以下步骤:sb3.1,利用带通滤波和陷波滤波去除ecg和其他信号中的噪音干扰;sb3.2,结合步骤1获取信号样本的采样频率对滤波后的信号进行重采样至固定频率;sb3.3,使用归一化函数对ecg信号和其他信号进行归一化。4.根据权利要求1所述的ppg与ecg自动转换的人工智能算法,其特征在于,步骤4构建并训练信号类型识别模型的步骤包括:s4.1,构建用于信号类型识别的深度神经网络,输入为ppg、ecg以及其他信号中的一个信号,输出为输入信号分别为ppg信号、ecg信号以及其他信号的概率;s4.2,初始化用于信号类型识别的深度神经网络参数并定义损失函数和优化算法;s4.3,训练并验证用于信号类型识别的深度神经网络。5.根据权利要求4所述的ppg与ecg自动转换的人工智能算法,其特征在于,步骤4.2具体包括以下步骤:s4.2.1,采用均值为0、方差为1的正态分布随机初始化用于信号类型识别的深度神经
网络;s4.2.2,定义损失函数来衡量真实类别和预测结果之间的差异;s4.2.3,定义adam优化算法为用于信号类型识别的深度神经网络的优化算法;步骤4.3具体包括以下步骤:s4.3.1,在训练集上通过前向传播算法来实现对信号特征的提取以预测信号的类别;s4.3.2,通过损失函数计算预测结果和真实结果之间的损失值;s4.3.3,结合基于链式求导法则的反向传播算法和adam优化算法来对用于信号类型识别的深度神经网络中的权重参数进行梯度更新;s4.3.4,在验证集上通过前向传播算法来实现对信号特征的提取以预测信号的类别;s4.3.5,通过损失函数计算预测结果和真实结果之间的损失值;s4.3.6,根据验证集上的损失值保存用于信号类型识别的深度神经网络;s4.3.7,重复步骤4.3.1-步骤4.3.6,直至训练集上用于信号类型识别的深度神经网络的损失值不再降低,最终保存的深度神经网络就是用于信号类型识别的深度神经网络。6.根据权利要求1所述的ppg与ecg自动转换的人工智能算法,其特征在于,步骤4中所述信号转换模型包括ppg转ecg模型,以及ecg转ppg模型;其中,构建并训练所述ppg转ecg模型包括以下步骤:s4.1’,构建用于ppg转ecg的深度神经网络,输入为ppg信号,输出为由ppg生成的ecg信号;s4.2’,初始化用于ppg转ecg的深度神经网络参数并定义损失函数和优化算法;具体包括以下步骤:s4.2.1’,采用均值为0、方差为1的正态分布随机初始化深度神经网络;s4.2.2’,定义损失函数来衡量原始ecg和生成ecg之间的差异;s4.2.3’,定义adam优化算法为用于ppg转ecg的深度神经网络的优化算法;s4.3’,训练并验证用于ppg转ecg的深度神经网络;具体包括以下步骤:s4.3.1’,在训练集上通过前向传播算法来实现对信号特征的提取以生成目标信号;s4.3.2’,通过损失函数计算生成结果和真实结果之间的损失值;s4.3.3’,结合基于链式求导法则的反向传播算法和adam优化算法来对用于ppg转ecg的深度神经网络中的权重参数进行梯度更新;s4.3.4’,在验证集上通过前向传播算法来实现对信号特征的提取以生成目标信号;s4.3.5’,通过损失函数计算生成结果和真实结果之间的损失值;s4.3.6’,根据验证集上的损失值保存用于ppg转ecg的深度神经网络;s4.3.7’,重复步骤4.3.1
’‑
步骤4.3.6’,直至训练集上用于ppg转ecg的深度神经网络的损失值不再降低,最终保存的深度神经网络就是用于ppg转ecg的深度神经网络;其中,构建并训练所述ecg转ppg模型,只需将输入与输出对调位置后,再重复步骤4.1
’‑
步骤4.3’的所有过程即可得到所述ecg转ppg模型。7.根据权利要求1所述的ppg与ecg自动转换的人工智能算法,其特征在于,步骤7中的具体步骤包括:s7.1,将步骤6获取的信号数据作为输入数据,并通过交互界面获得用户输入的信号、频率和转换结果的保存位置;
s7.2,将所述输入数据进行裁剪;即对所述输入数据进行长度相同的分段,并按照预设步长进行裁剪;其中信号总长度为个体采样时间*采样频率,分段长度为预设时间*采样频率,当分段到最后一段,且长度小于所述分段长度时,将最后一段舍弃;s7.3,将裁剪后的数据进行预处理;其中,对ppg进行预处理包括以下步骤:sa7.3.1,利用两个低通滤波器将ppg信号的基线拉平和均值归零;sa7.3.2,结合用户输入的采样频率对滤波后的信号进行重采样至固定频率;sa7.3.3,使用归一化函数对ppg信号进行归一化;对ecg和其他信号进行预处理包括以下步骤:sb7.3.1,利用带通滤波和陷波滤波去除ecg和其他信号中的噪音干扰;sb7.3.2,结合用户输入的采样频率对滤波后的信号进行重采样至固定频率;sb7.3.3,使用归一化函数对ecg信号和其他信号进行归一化;s7.4,对预处理后的信号数据输入至训练好后的所述信号类型识别模型中进行信号类型识别,若信号为ppg或ecg,则进行下一步操作,若信号不为ppg或ecg,则返回给用户一个提示;s7.5,利用已训练好的信号转换模型对ppg、ecg信号进行转换;s7.6,将步骤7.5转换后的结果保存至用户输入的保存位置中,并随机选取一段转换结果呈现给用户。8.一种计算机可读存储介质,其特征在于:介质上存有计算机程序,计算机程序运行后,执行如权利要求1至7中任一项所述的ppg与ecg自动转换的人工智能算法。9.一种计算机系统,其特征在于:包括处理器、存储介质,存储介质上存有计算机程序,处理器从存储介质上读取并运行计算机程序以执行如权利要求1至7中任一项所述的ppg与ecg自动转换的人工智能算法。

技术总结
本发明公开了一种PPG与ECG自动转换智能算法、存储介质和计算机系统,其中算法为:S1,从开源的生理信号库中获取同步的PPG和ECG及其他生理信号,并将不同信号进行重命名后单独放置于文件夹中;S2,将步骤1获取的数据进行人工标注和划分,并进行裁剪;S3,对步骤2裁剪后的数据进行预处理;S4,分别构建并训练信号类型识别模型以及信号转换模型;S5,将步骤4训练完成的模型进行级联整合得到PPG与ECG自动转换的人工智能算法;S6,通过交互界面获得用户输入的信号数据;S7,将步骤6获取的信号数据作为步骤5中得到的PPG与ECG自动转换的人工智能算法的输入,从而输出用户所需PPG与ECG信号转换后的结果。本发明实现了PPG信号与ECG信号之间的互相转换。间的互相转换。间的互相转换。


技术研发人员:章德云 洪申达 耿世佳 周荣博 俞杰 傅兆吉 鄂雁祺 齐新宇
受保护的技术使用者:合肥心之声健康科技有限公司
技术研发日:2022.06.17
技术公布日:2022/11/1
转载请注明原文地址: https://tieba.8miu.com/read-11043.html

最新回复(0)